Suppr超能文献

中间丝蛋白翻译后修饰的检测方法。

Assays for Posttranslational Modifications of Intermediate Filament Proteins.

作者信息

Snider Natasha T, Omary M Bishr

机构信息

Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.

Department of Molecular & Integrative Physiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.

出版信息

Methods Enzymol. 2016;568:113-38. doi: 10.1016/bs.mie.2015.09.005. Epub 2015 Nov 6.

Abstract

Intermediate filament (IF) proteins are known to be regulated by a number of posttranslational modifications (PTMs). Phosphorylation is the best-studied IF PTM, whereas ubiquitination, sumoylation, acetylation, glycosylation, ADP-ribosylation, farnesylation, and transamidation are less understood in functional terms but are known to regulate specific IFs under various contexts. The number and diversity of IF PTMs is certain to grow along with rapid advances in proteomic technologies. Therefore, the need for a greater understanding of the implications of PTMs to the structure, organization, and function of the IF cytoskeleton has become more apparent with the increased availability of data from global profiling studies of normal and diseased specimens. This chapter will provide information on established methods for the isolation and monitoring of IF PTMs along with the key reagents that are necessary to carry out these experiments.

摘要

已知中间丝(IF)蛋白受多种翻译后修饰(PTM)调控。磷酸化是研究最为深入的中间丝翻译后修饰,而泛素化、SUMO化、乙酰化、糖基化、ADP-核糖基化、法尼基化和转酰胺化在功能方面的了解较少,但已知在各种情况下可调节特定的中间丝。随着蛋白质组学技术的快速发展,中间丝翻译后修饰的数量和多样性肯定会增加。因此,随着正常和患病标本的全球分析研究数据可用性的增加,更深入了解翻译后修饰对中间丝细胞骨架的结构、组织和功能的影响的需求变得更加明显。本章将提供有关分离和监测中间丝翻译后修饰的既定方法以及进行这些实验所需的关键试剂的信息。

相似文献

1
Assays for Posttranslational Modifications of Intermediate Filament Proteins.
Methods Enzymol. 2016;568:113-38. doi: 10.1016/bs.mie.2015.09.005. Epub 2015 Nov 6.
2
Post-translational modifications of intermediate filament proteins: mechanisms and functions.
Nat Rev Mol Cell Biol. 2014 Mar;15(3):163-77. doi: 10.1038/nrm3753.
4
Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.
J Proteome Res. 2015 Aug 7;14(8):3292-304. doi: 10.1021/acs.jproteome.5b00308. Epub 2015 Jul 17.
5
Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity.
Plant Commun. 2020 Mar 25;1(4):100041. doi: 10.1016/j.xplc.2020.100041. eCollection 2020 Jul 13.
8
Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):289-326. doi: 10.1002/mas.21811. Epub 2022 Sep 27.
9
Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications.
J Proteome Res. 2021 Jan 1;20(1):110-121. doi: 10.1021/acs.jproteome.0c00778. Epub 2020 Dec 21.

引用本文的文献

1
LncPTEN1, a long non-coding RNA generated from , suppresses lung cancer metastasis through the regulation of EMT progress.
Noncoding RNA Res. 2025 May 24;14:25-37. doi: 10.1016/j.ncrna.2025.05.011. eCollection 2025 Oct.
2
Gigaxonin, mutated in Giant Axonal Neuropathy, interacts with TDP-43 and other RNA binding proteins.
bioRxiv. 2024 Sep 5:2024.09.03.611033. doi: 10.1101/2024.09.03.611033.
3
Defects in integrin complex formation promote -mediated muscular dystrophy.
Life Sci Alliance. 2024 May 15;7(8). doi: 10.26508/lsa.202301956. Print 2024 Aug.
4
UCHL3 promotes hepatocellular carcinoma cell migration by de-ubiquitinating and stabilizing Vimentin.
Front Oncol. 2023 Mar 9;13:1088475. doi: 10.3389/fonc.2023.1088475. eCollection 2023.
7
Vimentin binds to G-quadruplex repeats found at telomeres and gene promoters.
Nucleic Acids Res. 2022 Feb 22;50(3):1370-1381. doi: 10.1093/nar/gkab1274.
8
Deimination, Intermediate Filaments and Associated Proteins.
Int J Mol Sci. 2020 Nov 19;21(22):8746. doi: 10.3390/ijms21228746.

本文引用的文献

1
Quantitative mass spectrometry of posttranslational modifications: keys to confidence.
Sci Signal. 2015 Apr 7;8(371):re5. doi: 10.1126/scisignal.aaa6466.
2
Keratins in health and disease.
Curr Opin Cell Biol. 2015 Feb;32:73-81. doi: 10.1016/j.ceb.2014.12.008. Epub 2015 Jan 17.
3
PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20. doi: 10.1093/nar/gku1267. Epub 2014 Dec 16.
4
Intermediate filaments: a dynamic network that controls cell mechanics.
F1000Prime Rep. 2014 Jul 8;6:54. doi: 10.12703/P6-54. eCollection 2014.
5
Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation.
Cell Metab. 2014 Aug 5;20(2):208-13. doi: 10.1016/j.cmet.2014.07.014.
6
The growing landscape of lysine acetylation links metabolism and cell signalling.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):536-50. doi: 10.1038/nrm3841.
7
Beyond expectations: novel insights into epidermal keratin function and regulation.
Int Rev Cell Mol Biol. 2014;311:265-306. doi: 10.1016/B978-0-12-800179-0.00007-6.
8
Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics.
Trends Pharmacol Sci. 2014 Apr;35(4):187-207. doi: 10.1016/j.tips.2014.01.005. Epub 2014 Apr 6.
9
Post-translational modifications of intermediate filament proteins: mechanisms and functions.
Nat Rev Mol Cell Biol. 2014 Mar;15(3):163-77. doi: 10.1038/nrm3753.
10
Broken nuclei--lamins, nuclear mechanics, and disease.
Trends Cell Biol. 2014 Apr;24(4):247-56. doi: 10.1016/j.tcb.2013.11.004. Epub 2013 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验