Zanin Massimiliano, Correia Marco, Sousa Pedro A C, Cruz Jorge
Science and Technology Faculty, Computer Science Department, Universidade Nova de Lisboa, Lisboa, Portugal.
Innaxis Foundation &Research Institute, José Ortega y Gasset 20, 28006, Madrid, Spain.
Sci Rep. 2016 Jan 22;6:19790. doi: 10.1038/srep19790.
Generative models are a popular instrument for illuminating the relationships between the hidden variables driving the growth of a complex network and its final topological characteristics, a process known as the "genotype to phenotype problem". However, the definition of a complete methodology encompassing all stages of the analysis, and in particular the validation of the final model, is still an open problem. We here discuss a framework that allows to quantitatively optimise and validate each step of the model creation process. It is based on the execution of a classification task, and on estimating the additional precision provided by the modelled genotype. This encompasses the three main steps of the model creation, namely the selection of topological features, the optimisation of the parameters of the generative model, and the validation of the obtained results. We provide a minimum requirement for a generative model to be useful, prescribing the function mapping genotype to phenotype to be non-monotonic; and we further show how a previously published model does not fulfil such condition, casting doubts on its fitness for the study of neurological disorders. The generality of such framework guarantees its applicability beyond neuroscience, like the emergence of social or technological networks.
生成模型是一种常用工具,用于揭示驱动复杂网络增长的隐藏变量与其最终拓扑特征之间的关系,这一过程被称为“基因型到表型问题”。然而,涵盖分析所有阶段的完整方法的定义,尤其是最终模型的验证,仍然是一个悬而未决的问题。我们在此讨论一个框架,该框架允许对模型创建过程的每个步骤进行定量优化和验证。它基于分类任务的执行以及对建模基因型所提供的额外精度的估计。这包括模型创建的三个主要步骤,即拓扑特征的选择、生成模型参数的优化以及所得结果的验证。我们给出了生成模型有用性的最低要求,规定基因型到表型的函数映射应为非单调的;并且我们进一步表明,之前发表的一个模型不满足这样的条件,从而对其适用于神经疾病研究产生怀疑。这种框架的通用性保证了它不仅适用于神经科学,也适用于社会或技术网络等领域。