Suppr超能文献

复杂脑网络中从表型到基因型

From phenotype to genotype in complex brain networks.

作者信息

Zanin Massimiliano, Correia Marco, Sousa Pedro A C, Cruz Jorge

机构信息

Science and Technology Faculty, Computer Science Department, Universidade Nova de Lisboa, Lisboa, Portugal.

Innaxis Foundation &Research Institute, José Ortega y Gasset 20, 28006, Madrid, Spain.

出版信息

Sci Rep. 2016 Jan 22;6:19790. doi: 10.1038/srep19790.

Abstract

Generative models are a popular instrument for illuminating the relationships between the hidden variables driving the growth of a complex network and its final topological characteristics, a process known as the "genotype to phenotype problem". However, the definition of a complete methodology encompassing all stages of the analysis, and in particular the validation of the final model, is still an open problem. We here discuss a framework that allows to quantitatively optimise and validate each step of the model creation process. It is based on the execution of a classification task, and on estimating the additional precision provided by the modelled genotype. This encompasses the three main steps of the model creation, namely the selection of topological features, the optimisation of the parameters of the generative model, and the validation of the obtained results. We provide a minimum requirement for a generative model to be useful, prescribing the function mapping genotype to phenotype to be non-monotonic; and we further show how a previously published model does not fulfil such condition, casting doubts on its fitness for the study of neurological disorders. The generality of such framework guarantees its applicability beyond neuroscience, like the emergence of social or technological networks.

摘要

生成模型是一种常用工具,用于揭示驱动复杂网络增长的隐藏变量与其最终拓扑特征之间的关系,这一过程被称为“基因型到表型问题”。然而,涵盖分析所有阶段的完整方法的定义,尤其是最终模型的验证,仍然是一个悬而未决的问题。我们在此讨论一个框架,该框架允许对模型创建过程的每个步骤进行定量优化和验证。它基于分类任务的执行以及对建模基因型所提供的额外精度的估计。这包括模型创建的三个主要步骤,即拓扑特征的选择、生成模型参数的优化以及所得结果的验证。我们给出了生成模型有用性的最低要求,规定基因型到表型的函数映射应为非单调的;并且我们进一步表明,之前发表的一个模型不满足这样的条件,从而对其适用于神经疾病研究产生怀疑。这种框架的通用性保证了它不仅适用于神经科学,也适用于社会或技术网络等领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b9/4726251/42f3744b079f/srep19790-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验