Suppr超能文献

用于剖析感觉运动控制背后认知过程的脑机接口。

Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control.

作者信息

Golub Matthew D, Chase Steven M, Batista Aaron P, Yu Byron M

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University & University of Pittsburgh, United States.

Department of Biomedical Engineering, Carnegie Mellon University, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University & University of Pittsburgh, United States.

出版信息

Curr Opin Neurobiol. 2016 Apr;37:53-58. doi: 10.1016/j.conb.2015.12.005. Epub 2016 Jan 19.

Abstract

Sensorimotor control engages cognitive processes such as prediction, learning, and multisensory integration. Understanding the neural mechanisms underlying these cognitive processes with arm reaching is challenging because we currently record only a fraction of the relevant neurons, the arm has nonlinear dynamics, and multiple modalities of sensory feedback contribute to control. A brain-computer interface (BCI) is a well-defined sensorimotor loop with key simplifying advantages that address each of these challenges, while engaging similar cognitive processes. As a result, BCI is becoming recognized as a powerful tool for basic scientific studies of sensorimotor control. Here, we describe the benefits of BCI for basic scientific inquiries and review recent BCI studies that have uncovered new insights into the neural mechanisms underlying sensorimotor control.

摘要

感觉运动控制涉及预测、学习和多感觉整合等认知过程。由于我们目前仅记录了相关神经元的一小部分,手臂具有非线性动力学,且多种感觉反馈模式有助于控制,因此了解手臂伸展过程中这些认知过程背后的神经机制具有挑战性。脑机接口(BCI)是一个定义明确的感觉运动回路,具有关键的简化优势,能够应对上述每一项挑战,同时涉及相似的认知过程。因此,BCI正被公认为感觉运动控制基础科学研究的有力工具。在此,我们描述了BCI在基础科学研究中的优势,并回顾了最近的BCI研究,这些研究揭示了感觉运动控制背后神经机制的新见解。

相似文献

2
Brain oscillatory signatures of motor tasks.运动任务的脑振荡特征
J Neurophysiol. 2015 Jun 1;113(10):3663-82. doi: 10.1152/jn.00467.2013. Epub 2015 Mar 25.
3
Bidirectional brain-computer interfaces.双向脑机接口。
Handb Clin Neurol. 2020;168:163-181. doi: 10.1016/B978-0-444-63934-9.00013-5.
4
Internal models engaged by brain-computer interface control.脑机接口控制所涉及的内部模型。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1327-30. doi: 10.1109/EMBC.2012.6346182.
9
Brain-computer interfaces for basic neuroscience.用于基础神经科学的脑机接口
Handb Clin Neurol. 2020;168:233-247. doi: 10.1016/B978-0-444-63934-9.00017-2.

引用本文的文献

4
Dynamical constraints on neural population activity.对神经群体活动的动态约束
Nat Neurosci. 2025 Feb;28(2):383-393. doi: 10.1038/s41593-024-01845-7. Epub 2025 Jan 17.
5
Neural populations are dynamic but constrained.神经群体是动态的但受到限制。
Nat Neurosci. 2025 Feb;28(2):218-219. doi: 10.1038/s41593-024-01793-2.
8
Learning leaves a memory trace in motor cortex.学习在运动皮层中留下记忆痕迹。
Curr Biol. 2024 Apr 8;34(7):1519-1531.e4. doi: 10.1016/j.cub.2024.03.003. Epub 2024 Mar 25.

本文引用的文献

2
Brain-machine interfaces beyond neuroprosthetics.脑机接口超越神经假体。
Neuron. 2015 Apr 8;86(1):55-67. doi: 10.1016/j.neuron.2015.03.036.
4
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.
5
Dimensionality reduction for large-scale neural recordings.大规模神经记录的降维处理
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验