Center for Free-Electron Laser Science , Hamburg, Germany.
European XFEL GmbH , Hamburg, Germany.
Struct Dyn. 2015 Apr 27;2(4):041702. doi: 10.1063/1.4919301. eCollection 2015 Jul.
The Single Particles, Clusters and Biomolecules & Serial Femtosecond Crystallography (SPB/SFX) instrument at the European XFEL is located behind the SASE1 undulator and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. Here, we propose a cost-effective proof-of-principle experiment, aiming to demonstrate the actual feasibility of a single molecule diffraction experiment at the European XFEL. To this end, we assume self-seeding capabilities at SASE1 and we suggest to make use of the baseline European XFEL accelerator complex-with the addition of a slotted-foil setup-and of the SPB/SFX instrument. As a first step towards the realization of an actual experiment, we developed a complete package of computational tools for start-to-end simulations predicting its performance. Single biomolecule imaging capabilities at the European XFEL can be reached by exploiting special modes of operation of the accelerator complex and of the SASE1 undulator. The output peak power can be increased up to more than 1.5 TW, which allows to relax the requirements on the focusing efficiency of the optics and to reach the required fluence without changing the present design of the SPB/SFX instrument. Explicit simulations are presented using the 15-nm size RNA Polymerase II molecule as a case study. Noisy diffraction patterns were generated and they were processed to generate the 3D intensity distribution. We discuss requirements to the signal-to-background ratio needed to obtain a correct pattern orientation. When these are fulfilled, our results indicate that one can achieve diffraction without destruction with about 0.1 photons per Shannon pixel per shot at 4 Å resolution with 10(13) photons in a 4 fs pulse at 4 keV photon energy and in a 0.3 μm focus, corresponding to a fluence of 10(14) photons/μm(2). We assume negligible structured background. At this signal level, one needs only about 30 000 diffraction patterns to recover full 3D information. At the highest repetition rate manageable by detectors at European XFEL, one will be able to accumulate these data within a fraction of an hour, even assuming a relatively low hit probability of about a percent.
SPB/SFX 仪器位于欧洲 XFEL 的 SASE1 波荡器后面,旨在支持大小约为 0.1μm 至 1μm 的生物样本的成像和结构测定。该仪器的设计工作范围为 3keV 至 16keV 的光子能量。在这里,我们提出了一个具有成本效益的原理验证实验,旨在证明在欧洲 XFEL 上进行单分子衍射实验的实际可行性。为此,我们假设 SASE1 具有自种子能力,并建议利用欧洲 XFEL 的基本加速器组件-增加一个开槽箔设置-和 SPB/SFX 仪器。作为实现实际实验的第一步,我们开发了一套完整的端到端模拟预测工具包。通过利用加速器组件和 SASE1 波荡器的特殊工作模式,可以实现欧洲 XFEL 的单生物分子成像能力。输出峰值功率可以增加到 1.5TW 以上,这允许放宽对光学聚焦效率的要求,并在不改变 SPB/SFX 仪器现有设计的情况下达到所需的通量。使用 15nm 大小的 RNA 聚合酶 II 分子作为案例研究,给出了明确的模拟结果。生成了有噪的衍射图案,并对其进行处理以生成 3D 强度分布。我们讨论了获得正确图案取向所需的信噪比要求。当这些要求得到满足时,我们的结果表明,在 4keV 光子能量和 0.3μm 焦点下,使用 4fs 脉冲中的 10(13)个光子,可以在 4Å 分辨率下,每个 Shannon 像素每个脉冲获得约 0.1 个光子,而不破坏衍射,这对应于 10(14)个光子/μm(2)的通量。我们假设不存在结构化背景。在这种信号水平下,仅需要大约 30000 个衍射图案即可恢复完整的 3D 信息。在探测器可管理的最高重复率下,即使假设只有大约百分之一的相对较低的命中概率,也可以在几分之一小时内积累这些数据。