Mancuso Adrian P, Aquila Andrew, Batchelor Lewis, Bean Richard J, Bielecki Johan, Borchers Gannon, Doerner Katerina, Giewekemeyer Klaus, Graceffa Rita, Kelsey Oliver D, Kim Yoonhee, Kirkwood Henry J, Legrand Alexis, Letrun Romain, Manning Bradley, Lopez Morillo Luis, Messerschmidt Marc, Mills Grant, Raabe Steffen, Reimers Nadja, Round Adam, Sato Tokushi, Schulz Joachim, Signe Takem Cedric, Sikorski Marcin, Stern Stephan, Thute Prasad, Vagovič Patrik, Weinhausen Britta, Tschentscher Thomas
European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.
J Synchrotron Radiat. 2019 May 1;26(Pt 3):660-676. doi: 10.1107/S1600577519003308. Epub 2019 Apr 12.
The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation - in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.
欧洲X射线自由电子激光装置(FEL)于2017年5月首次实现激光输出,成为首台投入运行的高重复率硬X射线自由电子激光装置。生物结构测定已经受益于X射线自由电子激光的独特性质和能力,主要是通过串行晶体学的发展和应用。现在能够以比以前的X射线自由电子激光装置高出一个数量级以上的数据速率进行此类实验,这不仅能够实现更高的发现率,还能开展以前在较低数据速率下无法实现的新型实验。一个例子是时间分辨实验,这类实验需要更多的时间步长来进行解读,或者是从传统X射线自由电子激光串行晶体学中命中率较低的样品进行结构测定。在欧洲X射线自由电子激光装置首次实现激光输出之后,最初在两台科学仪器上进行了调试和运行,其中一台是单粒子、团簇和生物分子及串行飞秒晶体学(SPB/SFX)仪器。该仪器提供了生物样本结构测定所需的光子能量范围、焦斑尺寸和诊断工具。该仪器明确针对串行晶体学和正在发展的单粒子成像方法以及其他前向散射和衍射技术。本文描述了SPB/SFX的主要科学案例及其初始仪器设备——特别是其光学系统、可用的样品输送方法、二维探测器、辅助光学激光系统和关键诊断组件。将回顾该仪器目前的能力,并简要描述其未来能力的展望。