Staňková Helena, Hastie Alex R, Chan Saki, Vrána Jan, Tulpová Zuzana, Kubaláková Marie, Visendi Paul, Hayashi Satomi, Luo Mingcheng, Batley Jacqueline, Edwards David, Doležel Jaroslav, Šimková Hana
Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
BioNano Genomics, San Diego, CA, USA.
Plant Biotechnol J. 2016 Jul;14(7):1523-31. doi: 10.1111/pbi.12513. Epub 2016 Jan 23.
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.
由于面包小麦具有诸如17 Gbp的基因组大小、多倍体性质和重复序列普遍存在等特定特征,其参考基因组序列的组装具有挑战性。国际小麦基因组测序联盟采用的基于染色体物理图谱的逐个细菌人工染色体(BAC)测序作为关键策略,减少了由基因组复杂性和多倍体引起的问题,但重复序列含量仍然阻碍了序列组装。获得高分辨率基因组图谱以指导序列支架构建并验证物理图谱和序列组装,将对获得准确完整的基因组序列非常有益。在这里,我们选择7D染色体短臂(7DS)作为模型,首次证明将染色体流式分选与纳米通道阵列中的基因组作图相结合,并创建小麦染色体的从头基因组图谱是可行的。我们构建了一个由371个重叠群组成的高分辨率染色体图谱,N50为1.3 Mb。我们的方法获得的长DNA分子有助于对重复序列进行染色体规模的分析,并揭示了一个约800 kb的串联重复序列阵列,这是当前DNA测序技术难以处理的。将通过逐个克隆测序获得的7DS序列组装锚定到7DS基因组图谱上,为改进BAC重叠群物理图谱和在染色体臂尺度上验证序列组装提供了一个有价值的工具。我们的结果表明,逐个染色体地为整个小麦基因组创建基因组图谱是可行的,并且它们将成为支持生成改进的假分子的一种经济实惠的工具。