Pellis Alessandro, Herrero Acero Enrique, Ferrario Valerio, Ribitsch Doris, Guebitz Georg M, Gardossi Lucia
University of Natural Resources and Life Sciences Vienna, Department for Agrobiotechnology IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, A-3430 Tulln an der Donau, Austria.
Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, A-3430 Tulln an der Donau, Austria.
Trends Biotechnol. 2016 Apr;34(4):316-328. doi: 10.1016/j.tibtech.2015.12.009. Epub 2016 Jan 22.
The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications.
聚合物行业面临着减轻基于石油的塑料对环境造成的成本压力。生物技术有助于逐步取代基于石油的化学制品,并推动新型可再生产品的开发,从而实现碳循环的闭合。一系列生物基构建模块已实现工业化规模生产,并正在推动新一代可持续且具有功能竞争力的聚合物的发展,比如聚乳酸(PLA)。生物催化剂不仅通过催化生物基聚合物的选择性改性,还通过在温和可控的条件下催化其合成,为生物基聚合物增添更高价值。最终目标是在保留聚合物本体性能的同时,在其表面引入化学官能团,从而拓宽高级应用的范围。