Zhou Yu, Meng Zhen, Edman-Woolcott Maria, Hamm-Alvarez Sarah F, Zandi Ebrahim
USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California, USA.
J Proteomics Bioinform. 2015 Nov;8(11):260-265. doi: 10.4172/jpb.1000378. Epub 2015 Nov 28.
Liquid chromatography-mass spectrometry (LC-MS) based proteomics is one of the most widely used analytical platforms for global protein discovery and quantification. One of the challenges is the difficulty of identifying low abundance biomarker proteins from limited biological samples. Extensive fractionation could expand proteomics dynamic range, however, at the cost of high sample and time consumption. Extensive fractionation would increase the sample need and the labeling cost. Also quantitative proteomics depending on high resolution MS have the limitation of spectral acquisition speed. Those practical problems hinder the in-depth quantitative proteomics analysis such as tandem mass tag (TMT) experiments. We found the joint use of hydrophilic interaction liquid chromatography (HILIC) and strong cation exchange Chromatography (SCX) prefractionation at medium level could improve MS/MS efficiency, increase proteome coverage, shorten analysis time and save valuable samples. In addition, we scripted a program, Exclusion List Convertor (ELC), which automates and streamlines data acquisition workflow using the precursor ion exclusion (PIE) method. PIE reduces redundancy of high abundance MS/MS analyses by running replicates of the sample. The precursor ions detected in the initial run(s) are excluded for MS/MS in the subsequent run. We compared PIE methods with standard data dependent acquisition (DDA) methods running replicates without PIE for their effectiveness in quantifying TMT-tagged peptides and proteins in mouse tears. We quantified a total of 845 proteins and 1401 peptides using the PIE workflow, while the DDA method only resulted in 347 proteins and 731 peptides. This represents a 144% increase of protein identifications as a result of PIE analysis.
基于液相色谱-质谱联用(LC-MS)的蛋白质组学是全球蛋白质发现和定量分析中应用最广泛的分析平台之一。其中一个挑战是难以从有限的生物样本中识别低丰度生物标志物蛋白质。广泛的分级分离可以扩大蛋白质组学的动态范围,然而,这是以高样本量和时间消耗为代价的。广泛的分级分离会增加样本需求和标记成本。此外,依赖高分辨率质谱的定量蛋白质组学存在光谱采集速度的限制。这些实际问题阻碍了深入的定量蛋白质组学分析,如串联质量标签(TMT)实验。我们发现,联合使用中等水平的亲水相互作用液相色谱(HILIC)和强阳离子交换色谱(SCX)预分级分离可以提高MS/MS效率,增加蛋白质组覆盖率,缩短分析时间并节省宝贵的样本。此外,我们编写了一个程序,排除列表转换器(ELC),它使用前体离子排除(PIE)方法自动简化数据采集工作流程。PIE通过运行样本复制品减少了高丰度MS/MS分析的冗余。在初始运行中检测到的前体离子在后续运行中被排除用于MS/MS分析。我们将PIE方法与不使用PIE运行复制品的标准数据依赖采集(DDA)方法进行比较,以评估它们在定量小鼠泪液中TMT标记的肽和蛋白质方面的有效性。我们使用PIE工作流程共定量了845种蛋白质和1401种肽,而DDA方法仅鉴定出347种蛋白质和731种肽。这表明由于PIE分析,蛋白质鉴定数量增加了144%。