Suppr超能文献

在 LC-MS/MS 数据采集期间自动排除前体离子,以实现最佳离子鉴定。

Automated precursor ion exclusion during LC-MS/MS data acquisition for optimal ion identification.

机构信息

Process and Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.

出版信息

J Am Soc Mass Spectrom. 2012 Aug;23(8):1400-7. doi: 10.1007/s13361-012-0401-3. Epub 2012 Jun 6.

Abstract

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is widely used for characterizing multiple samples of complex mixtures with similar compositions. This article addresses a data acquisition strategy for collecting a maximal number of unique, high-quality MS/MS during LC-MS/MS analysis of multiple samples. Based on the concept that a component only needs to be identified once when analyzing multiple samples with similar compositions, an automated intersample data-dependent acquisition strategy was developed. The strategy is based on precursor ion exclusion (PIE) and is implemented in MassAnalyzer in an automated fashion for Thermo Scientific (San Jose, CA, USA) mass spectrometers. In this method, MassAnalyzer submits one sample at a time to the sample queue. After data acquisition of each sample, MassAnalyzer automatically analyzes the data to generate a PIE list based on the MS/MS precursor ions, merges this list with the list generated from previous runs, adds the list to the MS method file, and submits the next sample to the queue. The PIE list contains both m/z value and time window for each precursor ion, and is generated intelligently so that if an MS/MS is insufficient for identifying the peak of interest, it will be collected again near the top of the peak in the next run. Therefore, the strategy maximizes both quality and the number of unique MS/MS. When automated PIE was used to acquire LC-MS/MS data of an antibody tryptic digest and a soy hydrolysate sample, the number of identified ions increased by 52% and 93%, respectively, compared with data acquired without using PIE.

摘要

液相色谱-串联质谱(LC-MS/MS)广泛用于对具有相似组成的多种复杂混合物样品进行特征分析。本文提出了一种数据采集策略,旨在提高 LC-MS/MS 分析多种复杂混合物样品时高质量、独特 MS/MS 的采集数量。

该策略基于在分析具有相似组成的多个样品时,只需对一个成分进行一次鉴定的理念,设计了一种自动化的基于样品间的、数据依赖的采集策略。该策略基于前体离子排除(PIE),并在 Thermo Scientific(美国加利福尼亚州圣何塞)的 MassAnalyzer 中以自动化的方式实现。在这种方法中,MassAnalyzer 一次提交一个样品到样品队列中。在对每个样品进行数据采集后,MassAnalyzer 自动对数据进行分析,根据 MS/MS 前体离子生成 PIE 列表,将该列表与前几次运行生成的列表合并,将列表添加到 MS 方法文件中,然后将下一个样品提交到队列中。PIE 列表包含每个前体离子的 m/z 值和时间窗口,并且是智能生成的,因此,如果一个 MS/MS 不足以识别感兴趣的峰,则将在下一次运行时在峰的顶部附近再次采集。因此,该策略最大化了 MS/MS 的质量和独特性。当使用自动化 PIE 来采集抗体酶解物和大豆水解物样品的 LC-MS/MS 数据时,与未使用 PIE 采集的数据相比,分别有 52%和 93%的鉴定离子数量增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验