Müller Manuel M, Fierz Beat, Bittova Lenka, Liszczak Glen, Muir Tom W
Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
Nat Chem Biol. 2016 Mar;12(3):188-93. doi: 10.1038/nchembio.2008. Epub 2016 Jan 25.
Specialized chromatin domains contribute to nuclear organization and regulation of gene expression. Gene-poor regions are di- and trimethylated at lysine 9 of histone H3 (H3K9me2 and H3K9me3) by the histone methyltransferase Suv39h1. This enzyme harnesses a positive feedback loop to spread H3K9me2 and H3K9me3 over extended heterochromatic regions. However, little is known about how feedback loops operate on complex biopolymers such as chromatin, in part because of the difficulty in obtaining suitable substrates. Here we describe the synthesis of multidomain 'designer chromatin' templates and their application to dissecting the regulation of human Suv39h1. We uncovered a two-step activation switch where H3K9me3 recognition and subsequent anchoring of the enzyme to chromatin allosterically promotes methylation activity and confirmed that this mechanism contributes to chromatin recognition in cells. We propose that this mechanism serves as a paradigm in chromatin biochemistry, as it enables highly dynamic sampling of chromatin state combined with targeted modification of desired genomic regions.
特殊的染色质结构域有助于细胞核的组织构建和基因表达调控。在组蛋白甲基转移酶Suv39h1的作用下,基因贫乏区域的组蛋白H3第9位赖氨酸(H3K9me2和H3K9me3)发生二甲基化和三甲基化。该酶利用正反馈回路,使H3K9me2和H3K9me3在扩展的异染色质区域扩散。然而,对于反馈回路如何在诸如染色质这样的复杂生物聚合物上发挥作用,我们知之甚少,部分原因在于难以获得合适的底物。在此,我们描述了多结构域“定制染色质”模板的合成及其在剖析人类Suv39h1调控机制中的应用。我们发现了一个两步激活开关,其中H3K9me3的识别以及随后该酶与染色质的锚定通过变构作用促进甲基化活性,并证实这种机制有助于细胞中的染色质识别。我们认为这种机制是染色质生物化学中的一种范例,因为它能够对染色质状态进行高度动态的采样,并结合对所需基因组区域的靶向修饰。