Suppr超能文献

鼓膜机械损伤与脉冲压力波形的关系——一项针对龙猫的研究。

Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

作者信息

Gan Rong Z, Nakmali Don, Ji Xiao D, Leckness Kegan, Yokell Zachary

机构信息

School of Aerospace and Mechanical Engineering and Biomedical Engineering Center, University of Oklahoma, Norman, OK, USA.

School of Aerospace and Mechanical Engineering and Biomedical Engineering Center, University of Oklahoma, Norman, OK, USA.

出版信息

Hear Res. 2016 Oct;340:25-34. doi: 10.1016/j.heares.2016.01.004. Epub 2016 Jan 22.

Abstract

Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure.

摘要

爆炸暴露导致的中耳结构机械损伤直接引起听力损失,而鼓膜(TM)破裂是耳部最常见的损伤。然而,目前尚不清楚不同模式的TM破裂所分级的损伤严重程度与爆炸波引起的超压波形之间有何关系。在本研究中,我们在龙猫身上研究了TM破裂阈值与脉冲或超压波形之间的关系。两组动物在两种条件下暴露于我们实验室模拟的爆炸超压:开阔场地和用不锈钢杯覆盖动物头部进行屏蔽。在暴露前后测量听觉脑干反应(ABR)和宽带鼓室图,以检查听力阈值和中耳功能。结果表明,屏蔽情况下记录的波形与开阔场地不同,屏蔽情况下的TM破裂阈值低于开阔场地(3.4±0.7对9.1±1.7 psi或181±1.6对190±1.9 dB SPL)。波形的脉冲压力能谱分析表明,屏蔽波形在高频处的能量比开阔场地波形更大。最后,使用龙猫耳朵的三维有限元(FE)模型来计算TM中的应力分布以及脉冲压力波作用下的TM位移。FE模型得出的屏蔽情况下应力随压力加载的变化比开阔情况下快得多。这一发现为爆炸引起的TM损伤与超压波形之间的生物力学机制提供了依据。开阔和屏蔽情况之间的TM破裂阈值差异表明头盔可能存在声学作用,会在爆炸暴露期间加重耳部损伤。

相似文献

1
Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.
Hear Res. 2016 Oct;340:25-34. doi: 10.1016/j.heares.2016.01.004. Epub 2016 Jan 22.
2
The effect of blast overpressure on the mechanical properties of a chinchilla tympanic membrane.
Hear Res. 2017 Oct;354:48-55. doi: 10.1016/j.heares.2017.08.003. Epub 2017 Aug 18.
3
Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
Hear Res. 2019 Jul;378:43-52. doi: 10.1016/j.heares.2018.12.003. Epub 2018 Dec 14.
4
The effect of blast overpressure on the mechanical properties of the human tympanic membrane.
J Mech Behav Biomed Mater. 2019 Dec;100:103368. doi: 10.1016/j.jmbbm.2019.07.026. Epub 2019 Aug 7.
5
Biomechanical Measurement and Modeling of Human Eardrum Injury in Relation to Blast Wave Direction.
Mil Med. 2018 Mar 1;183(suppl_1):245-251. doi: 10.1093/milmed/usx149.
6
Biomechanical Changes of Tympanic Membrane to Blast Waves.
Adv Exp Med Biol. 2018;1097:321-334. doi: 10.1007/978-3-319-96445-4_17.
7
Hearing Damage Induced by Blast Overpressure at Mild TBI Level in a Chinchilla Model.
Mil Med. 2020 Jan 7;185(Suppl 1):248-255. doi: 10.1093/milmed/usz309.
8
Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves.
Ann Biomed Eng. 2017 Oct;45(10):2383-2394. doi: 10.1007/s10439-017-1870-0. Epub 2017 Jun 20.
10
3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
Ann Biomed Eng. 2023 May;51(5):1106-1118. doi: 10.1007/s10439-023-03200-6. Epub 2023 Apr 10.

引用本文的文献

1
Quantifying Real-Time Dynamic Responses and Damage Mechanics of Human Tympanic Membranes Exposed to Blast Waves.
J Eng Sci Med Diagn Ther. 2025 Nov 1;8(4):041106. doi: 10.1115/1.4067892. Epub 2025 Mar 14.
4
3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
Ann Biomed Eng. 2023 May;51(5):1106-1118. doi: 10.1007/s10439-023-03200-6. Epub 2023 Apr 10.
5
Mitigation of Hearing Damage After Repeated Blast Exposures in Animal Model of Chinchilla.
J Assoc Res Otolaryngol. 2022 Oct;23(5):603-616. doi: 10.1007/s10162-022-00862-2. Epub 2022 Jul 29.
6
Dependence of visual and cognitive outcomes on animal holder configuration in a rodent model of blast overpressure exposure.
Vision Res. 2021 Nov;188:162-173. doi: 10.1016/j.visres.2021.07.008. Epub 2021 Jul 30.
7
The chinchilla animal model for hearing science and noise-induced hearing loss.
J Acoust Soc Am. 2019 Nov;146(5):3710. doi: 10.1121/1.5132950.
8
Autonomic responses to blast overpressure can be elicited by exclusively exposing the ear in rats.
J Otol. 2018 Jun;13(2):44-53. doi: 10.1016/j.joto.2018.01.001. Epub 2018 Mar 9.
10
Vestibular Injury After Low-Intensity Blast Exposure.
Front Neurol. 2018 May 14;9:297. doi: 10.3389/fneur.2018.00297. eCollection 2018.

本文引用的文献

1
Mechanisms of hearing loss after blast injury to the ear.
PLoS One. 2013 Jul 1;8(7):e67618. doi: 10.1371/journal.pone.0067618. Print 2013.
2
Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs.
Hear Res. 2011 Jul;277(1-2):96-106. doi: 10.1016/j.heares.2011.03.003. Epub 2011 Mar 21.
3
Auditory and vestibular dysfunction associated with blast-related traumatic brain injury.
J Rehabil Res Dev. 2009;46(6):797-810. doi: 10.1682/jrrd.2008.09.0118.
4
Measurement of conductive hearing loss in mice.
Hear Res. 2010 May;263(1-2):93-103. doi: 10.1016/j.heares.2009.10.002. Epub 2009 Oct 14.
5
Measurement of young's modulus of human tympanic membrane at high strain rates.
J Biomech Eng. 2009 Jun;131(6):064501. doi: 10.1115/1.3118770.
6
The effects of positive and negative middle ear pressures on auditory threshold.
Otol Neurotol. 2006 Aug;27(5):734-8. doi: 10.1097/01.mao.0000226296.28704.de.
7
Quantitative experimental assessment of the factors contributing to hearing loss in serous otitis media.
Otol Neurotol. 2005 Sep;26(5):1011-5. doi: 10.1097/01.mao.0000185051.69394.01.
9
Energy-independent factors influencing noise-induced hearing loss in the chinchilla model.
J Acoust Soc Am. 2001 Dec;110(6):3163-8. doi: 10.1121/1.1414707.
10
Blast overpressure induced structural and functional changes in the auditory system.
Toxicology. 1997 Jul 25;121(1):29-40. doi: 10.1016/s0300-483x(97)03653-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验