Alipanahi Anahita, Luiz Jonathan Oliveira, Rosowski John J, Furlong Cosme, Cheng Jeffrey Tao
Center for Holographic Studies and Laser micro-mechaTronics (CHSLT), Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609.
Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114.
J Eng Sci Med Diagn Ther. 2025 Nov 1;8(4):041101. doi: 10.1115/1.4066622. Epub 2024 Oct 23.
Investigating the dynamic response of human tympanic membranes (TMs) exposed to blasts requires full-field-of-view and three-dimensional (3D) methodologies. Our paper introduces a system that combines high-speed 3D digital image correlation (HS 3D-DIC) and Schlieren imaging (HS-SI) with a custom-designed shock tube for generating blast waves. This integrated system allows us to measure TM surface motions under intense transient loading, capturing full-field-of-view shape deformations exceeding 100 m with a temporal resolution of 10 s. System characterization encompasses (i) measuring the shock tube's output levels and repeatability, (ii) assessment of the spatial and temporal resolutions of the imaging techniques, and (iii) identification of overall system limitations. Optimizing these factors is crucial for improving the reliability of our system to ensure the accurate measurement of deformations. To assess our shock tube's reliability in generating repeated blast waves, we instrumented it with high-pressure (HP) and high-frequency (HF) pressure sensors along the blast wave pathway to record overpressure waveforms and compared them with Schlieren imaging visualized blast waves. We validate our HS 3D-DIC measured deformations by comparing them with deformations measured using single-point laser Doppler vibrometry (LDV), establishing a comprehensive assessment of the TM's dynamic response and potential fracture mechanics under blast. Finally, we test our approach with 3D-printed TM-like samples and a real cadaveric human TM. This methodology lays the groundwork for further investigations of blast-related auditory damage and the invention of more effective protective and medical solutions.
研究暴露于爆炸中的人类鼓膜(TM)的动态响应需要全视野和三维(3D)方法。我们的论文介绍了一种系统,该系统将高速3D数字图像相关技术(HS 3D-DIC)和纹影成像技术(HS-SI)与定制设计的用于产生爆炸波的激波管相结合。这种集成系统使我们能够测量强瞬态载荷下TM的表面运动,以10秒的时间分辨率捕捉超过100米的全视野形状变形。系统表征包括:(i)测量激波管的输出水平和重复性,(ii)评估成像技术的空间和时间分辨率,以及(iii)识别整个系统的局限性。优化这些因素对于提高我们系统的可靠性以确保准确测量变形至关重要。为了评估我们的激波管在产生重复爆炸波方面的可靠性,我们在爆炸波传播路径上安装了高压(HP)和高频(HF)压力传感器来记录超压波形,并将它们与纹影成像可视化的爆炸波进行比较。我们通过将HS 3D-DIC测量的变形与使用单点激光多普勒振动测量法(LDV)测量的变形进行比较,来验证我们测量的变形,从而对爆炸作用下TM的动态响应和潜在断裂力学进行全面评估。最后,我们用3D打印的类似TM的样本和真实的尸体人类TM测试了我们的方法。这种方法为进一步研究爆炸相关的听觉损伤以及发明更有效的防护和医疗解决方案奠定了基础。