Suppr超能文献

拟南芥中植物隐花色素的信号传导机制。

Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.

作者信息

Liu Bobin, Yang Zhaohe, Gomez Adam, Liu Bin, Lin Chentao, Oka Yoshito

机构信息

Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

出版信息

J Plant Res. 2016 Mar;129(2):137-48. doi: 10.1007/s10265-015-0782-z. Epub 2016 Jan 25.

Abstract

Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.

摘要

隐花色素(CRY)是一种黄素蛋白,可响应植物中的蓝光引导多种发育过程。CRY的构象变化由光子吸收诱导,并导致光信号向下游组分的传递。在拟南芥中,CRY1和CRY2在调节光形态建成反应和光周期开花中发挥着不同但部分重叠的功能。例如,CRY1和CRY2都通过以蓝光依赖的方式直接逆转E3泛素连接酶对组成型光形态建成1和光敏色素A-105 1复合物的活性来调节转录因子的丰度。CRY2还通过直接与一种名为隐花色素相互作用的碱性螺旋-环-螺旋的转录因子相互作用,特异性地控制光周期开花机制。最近,CRY1的结构/功能分析表明,组成型光形态建成1独立途径也参与了CRY1介导的下胚轴伸长抑制。因此,CRY1和CRY2不仅共享一条共同途径,还通过不同途径传递光信号,这可能导致植物发育程序的改变。

相似文献

1
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
J Plant Res. 2016 Mar;129(2):137-48. doi: 10.1007/s10265-015-0782-z. Epub 2016 Jan 25.
4
A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
Plant J. 2017 Nov;92(3):426-436. doi: 10.1111/tpj.13664. Epub 2017 Oct 9.
7
Blue light-induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity.
J Integr Plant Biol. 2022 Sep;64(9):1724-1738. doi: 10.1111/jipb.13331. Epub 2022 Aug 30.
8
Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):224-9. doi: 10.1073/pnas.1511437113. Epub 2015 Dec 22.

引用本文的文献

2
Identification and Expression Characteristics of the Cryptochrome Gene Family in .
Plants (Basel). 2025 May 27;14(11):1637. doi: 10.3390/plants14111637.
3
Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in .
Photosynthetica. 2023 Mar 24;61(2):215-224. doi: 10.32615/ps.2023.009. eCollection 2023.
5
Application of Red and Blue LED Light on Cultivation and Postharvest of Tomatoes ( L.).
Scientifica (Cairo). 2024 Sep 3;2024:3815651. doi: 10.1155/2024/3815651. eCollection 2024.
6
A structural decryption of cryptochromes.
Front Chem. 2024 Aug 16;12:1436322. doi: 10.3389/fchem.2024.1436322. eCollection 2024.
7
Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on .
Front Plant Sci. 2024 May 28;15:1390031. doi: 10.3389/fpls.2024.1390031. eCollection 2024.
8
Molecular mechanisms underlying the signal perception and transduction during seed germination.
Mol Breed. 2024 Mar 20;44(4):27. doi: 10.1007/s11032-024-01465-w. eCollection 2024 Apr.
9
Magic Blue Light: A Versatile Mediator of Plant Elongation.
Plants (Basel). 2023 Dec 31;13(1):115. doi: 10.3390/plants13010115.
10
Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways.
Int J Mol Sci. 2023 May 21;24(10):9052. doi: 10.3390/ijms24109052.

本文引用的文献

1
Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis.
PLoS Genet. 2015 Sep 14;11(9):e1005516. doi: 10.1371/journal.pgen.1005516. eCollection 2015 Sep.
2
Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9135-40. doi: 10.1073/pnas.1504404112. Epub 2015 Jun 23.
4
The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2.
Mol Plant. 2015 Apr;8(4):631-43. doi: 10.1016/j.molp.2015.03.005. Epub 2015 Mar 17.
6
Cryptochrome-mediated light responses in plants.
Enzymes. 2014;35:167-89. doi: 10.1016/B978-0-12-801922-1.00007-5.
7
The CNT1 Domain of Arabidopsis CRY1 Alone Is Sufficient to Mediate Blue Light Inhibition of Hypocotyl Elongation.
Mol Plant. 2015 May;8(5):822-5. doi: 10.1016/j.molp.2015.02.008. Epub 2015 Feb 24.
9
Searching for the mechanism of signalling by plant photoreceptor cryptochrome.
FEBS Lett. 2015 Jan 16;589(2):189-92. doi: 10.1016/j.febslet.2014.12.008. Epub 2014 Dec 11.
10
Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster.
PLoS Genet. 2014 Dec 4;10(12):e1004804. doi: 10.1371/journal.pgen.1004804. eCollection 2014 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验