Attia Zachi I, DeSimone Christopher V, Dillon John J, Sapir Yehu, Somers Virend K, Dugan Jennifer L, Bruce Charles J, Ackerman Michael J, Asirvatham Samuel J, Striemer Bryan L, Bukartyk Jan, Scott Christopher G, Bennet Kevin E, Ladewig Dorothy J, Gilles Emily J, Sadot Dan, Geva Amir B, Friedman Paul A
Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (Z.I.A., C.V.D.S., V.K.S., J.L.D., C.J.B., M.J.A., S.J.A., J.B., P.A.F.) Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel (Z.I.A., Y.S., D.S., A.B.G.).
Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (Z.I.A., C.V.D.S., V.K.S., J.L.D., C.J.B., M.J.A., S.J.A., J.B., P.A.F.).
J Am Heart Assoc. 2016 Jan 25;5(1):e002746. doi: 10.1161/JAHA.115.002746.
Hyper- and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life threatening. A noninvasive, unobtrusive, blood-free method for tracking potassium would be an important clinical advance.
Two groups of hemodialysis patients (development group, n=26; validation group, n=19) underwent high-resolution digital ECG recordings and had 2 to 3 blood tests during dialysis. Using advanced signal processing, we developed a personalized regression model for each patient to noninvasively calculate potassium values during the second and third dialysis sessions using only the processed single-channel ECG. In addition, by analyzing the entire development group's first-visit data, we created a global model for all patients that was validated against subsequent sessions in the development group and in a separate validation group. This global model sought to predict potassium, based on the T wave characteristics, with no blood tests required. For the personalized model, we successfully calculated potassium values with an absolute error of 0.36±0.34 mmol/L (or 10% of the measured blood potassium). For the global model, potassium prediction was also accurate, with an absolute error of 0.44±0.47 mmol/L for the training group (or 11% of the measured blood potassium) and 0.5±0.42 for the validation set (or 12% of the measured blood potassium).
The signal-processed ECG derived from a single lead can be used to calculate potassium values with clinically meaningful resolution using a strategy that requires no blood tests. This enables a cost-effective, noninvasive, unobtrusive strategy for potassium assessment that can be used during remote monitoring.
高钾血症和低钾血症在临床上并无明显症状,在肾病或心脏病患者中较为常见,且会危及生命。一种无创、便捷、无需采血的钾离子监测方法将是一项重要的临床进展。
两组血液透析患者(开发组,n = 26;验证组,n = 19)接受了高分辨率数字心电图记录,并在透析期间进行了2至3次血液检测。通过先进的信号处理技术,我们为每位患者开发了个性化回归模型,仅使用处理后的单通道心电图,就能在第二次和第三次透析过程中无创计算钾离子值。此外,通过分析整个开发组首次就诊的数据,我们为所有患者创建了一个全局模型,并在开发组及一个单独的验证组中,依据后续透析情况对该模型进行验证。这个全局模型旨在根据T波特征预测钾离子水平,无需进行血液检测。对于个性化模型,我们成功计算出钾离子值,绝对误差为0.36±0.34 mmol/L(或为测得血钾值的10%)。对于全局模型,钾离子预测也很准确,训练组的绝对误差为0.44±0.47 mmol/L(或为测得血钾值的11%),验证组的绝对误差为0.5±0.42(或为测得血钾值的12%)。
源自单导联的经信号处理的心电图可用于以具有临床意义的分辨率计算钾离子值,采用的策略无需进行血液检测。这使得能够采用一种经济高效、无创且便捷的策略进行钾离子评估,可用于远程监测。