Suppr超能文献

监测重度高钾血症患者的血清钾浓度:无血人工智能心电图的作用

Monitoring serum potassium concentration in patients with severe hyperkalemia: the role of bloodless artificial intelligence-enabled electrocardiography.

作者信息

Chen Chien-Chou, Lin Chin, Lee Ding-Jie, Lin Chin-Sheng, Chen Sy-Jou, Sung Chih-Chien, Hsu Yu-Juei, Lin Shih-Hua

机构信息

Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.

Division of Nephrology, Department of Medicine, Tri-Service General Hospital Songshan branch, National Defense Medical Center, Taipei, Taiwan, R.O.C.

出版信息

Clin Kidney J. 2025 Apr 8;18(4):sfaf092. doi: 10.1093/ckj/sfaf092. eCollection 2025 Apr.

Abstract

BACKGROUND

Severe hyperkalemia is a life-threatening emergency requiring prompt management and close surveillance. Although artificial intelligence-enabled electrocardiography (AI-ECG) has been developed to rapidly detect hyperkalemia, its application to monitor potassium (K) levels remains unassessed. This study aimed to evaluate the effectiveness of AI-ECG for monitoring K levels in patients with severe hyperkalemia.

METHODS

This retrospective study was performed at an emergency department of a single medical center over 2.5 years. Patients with severe hyperkalemia defined as Lab-K ≥6.5 mmol/l with matched ECG-K ≥5.5 mmol/l were included. ECG-K was quantified by ECG12Net analysis of the AI-ECG system. The following paired ECG-K and Lab-K were measured at least twice, almost simultaneously, during and after K-lowering therapy in 1 day. Clinical characteristics, pertinent intervention, and laboratory data were analyzed.

RESULTS

Seventy-six patients fulfilling the inclusion criteria exhibited initial Lab-K 7.4 ± 0.7 and ECG-K 6.8 ± 0.5 mmol/l. Most of them had chronic kidney disease (CKD) or were on chronic hemodialysis (HD). The followed Lab-K and ECG-K measured with a mean time difference of 11.4 ± 5.6 minutes significantly declined in parallel both in patients treated medically ( = 39) and with HD ( = 37). However, there was greater decrement in Lab-K⁺ (mean 7.3 to 4.1) than ECG-K⁺ (mean 6.6 to 5.0) shortly after HD. Three patients with persistent ECG-K hyperkalemia despite normalized Lab-K exhibited concomitant acute cardiovascular comorbidities.

CONCLUSIONS

AI-ECG for K prediction may help monitor K level for severe hyperkalemia and reveal more severe cardiac disorders in the patients with persistent AI-ECG hyperkalemia.

摘要

背景

严重高钾血症是一种危及生命的紧急情况,需要迅速处理和密切监测。尽管已开发出人工智能心电图(AI-ECG)用于快速检测高钾血症,但其在监测血钾(K)水平方面的应用仍未得到评估。本研究旨在评估AI-ECG监测严重高钾血症患者血钾水平的有效性。

方法

本回顾性研究在一家医疗中心的急诊科进行,为期2.5年。纳入严重高钾血症患者,定义为实验室血钾(Lab-K)≥6.5 mmol/l且匹配的心电图血钾(ECG-K)≥5.5 mmol/l。通过AI-ECG系统的ECG12Net分析对ECG-K进行定量。在降钾治疗期间及之后的1天内,至少同时测量两次以下配对的ECG-K和Lab-K。分析临床特征、相关干预措施和实验室数据。

结果

76例符合纳入标准的患者初始Lab-K为7.4±0.7,ECG-K为6.8±0.5 mmol/l。他们中的大多数患有慢性肾脏病(CKD)或接受慢性血液透析(HD)。在接受药物治疗(n = 39)和HD治疗(n = 37)的患者中,随后测量的Lab-K和ECG-K平均时间差为11.4±5.6分钟,二者均显著平行下降。然而,HD后不久,Lab-K⁺的下降幅度(平均从7.3降至4.1)大于ECG-K⁺(平均从6.6降至5.0)。3例尽管Lab-K已恢复正常但ECG-K仍持续高钾血症的患者伴有急性心血管合并症。

结论

用于血钾预测的AI-ECG可能有助于监测严重高钾血症患者的血钾水平,并揭示持续性AI-ECG高钾血症患者中更严重的心脏疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c20f/12032525/bf6c51f85be1/sfaf092fig1g.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验