Division of Nephrology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 22, Gwanpyeong-ro 170 Beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068, Republic of Korea.
VUNO Inc., 9F, 479, Gangnam-daero, Seocho-gu, Seoul, 06541, Republic of Korea.
Sci Rep. 2024 Oct 1;14(1):22868. doi: 10.1038/s41598-024-71562-5.
Dyskalemia is a common electrolyte abnormality. Since dyskalemia can cause fatal arrhythmias and cardiac arrest in severe cases, it is crucial to monitor serum potassium (K) levels on time. We developed deep learning models to detect hyperkalemia (K ≥ 5.5 mEq/L) and hypokalemia (K < 3.5 mEq/L) from electrocardiograms (ECGs), which are noninvasive and can be quickly measured. The retrospective cohort study was conducted at two hospitals from 2006 to 2020. The training set, validation set, internal testing cohort, and external validation cohort comprised 310,449, 15,828, 23,849, and 130,415 ECG-K samples, respectively. Deep learning models demonstrated high diagnostic performance in detecting hyperkalemia (AUROC 0.929, 0.912, 0.887 with sensitivity 0.926, 0.924, 0.907 and specificity 0.706, 0.676, 0.635 for 12-lead, limb-lead, lead I ECGs) and hypokalemia (AUROC 0.925, 0.896, 0.885 with sensitivity 0.912, 0.896, 0.904 and specificity 0.790, 0.734, 0.694) in the internal testing cohort. The group predicted to be positive by the hyperkalemia model showed a lower 30-day survival rate compared to the negative group (p < 0.001), supporting the clinical efficacy of the model. We also compared the importance of ECG segments (P, QRS, and T) on dyskalemia prediction of the model for interpretability. By applying these models in clinical practice, it will be possible to diagnose dyskalemia simply and quickly, thereby contributing to the improvement of patient outcomes.
高钾血症和低钾血症是常见的电解质异常。由于严重的高钾血症可导致致命性心律失常和心脏骤停,因此及时监测血清钾(K)水平至关重要。我们开发了深度学习模型,用于从心电图(ECG)中检测高钾血症(K≥5.5 mEq/L)和低钾血症(K<3.5 mEq/L),ECG 是非侵入性的,可以快速测量。这项回顾性队列研究于 2006 年至 2020 年在两家医院进行。训练集、验证集、内部测试队列和外部验证队列分别包含 310449、15828、23849 和 130415 个 ECG-K 样本。深度学习模型在检测高钾血症(12 导联、肢导联、I 导联 ECG 的 AUC 分别为 0.929、0.912、0.887,灵敏度为 0.926、0.924、0.907,特异性为 0.706、0.676、0.635)和低钾血症(AUC 分别为 0.925、0.896、0.885,灵敏度为 0.912、0.896、0.904,特异性为 0.790、0.734、0.694)方面具有出色的诊断性能。内部测试队列中,高钾血症模型预测为阳性的组比预测为阴性的组的 30 天生存率更低(p<0.001),支持该模型的临床效果。我们还比较了模型对 ECG 各节段(P、QRS 和 T)在预测电解质异常中的重要性,以提高模型的可解释性。在临床实践中应用这些模型,将可以简单、快速地诊断电解质异常,从而改善患者的预后。