Suppr超能文献

基于稀疏重建和自适应字典选择的组织病理学脑肿瘤图像稳健细胞检测

Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.

作者信息

Su Hai, Xing Fuyong, Yang Lin

出版信息

IEEE Trans Med Imaging. 2016 Jun;35(6):1575-86. doi: 10.1109/TMI.2016.2520502. Epub 2016 Jan 21.

Abstract

Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96.

摘要

成功的诊断和预后分层、治疗结果预测以及治疗计划取决于可重复且准确的病理学分析。计算机辅助诊断(CAD)是帮助医生在癌症诊断和治疗中做出更好决策的有用工具。准确的细胞检测通常是后续细胞分析的基本前提。强大的脑肿瘤细胞核/细胞检测的主要挑战在于处理细胞外观的显著变化以及分离相互接触的细胞。在本文中,我们提出了一种使用稀疏重建和自适应字典学习的自动细胞检测框架。我们方法的主要贡献在于:1)一种基于稀疏重建的方法来分离相互接触的细胞;2)一种用于处理细胞外观变化的自适应字典学习方法。所提出的方法已在从32张全切片扫描图像中提取的包含2000多个细胞的数据集上进行了广泛测试。自动细胞检测结果与手动标注的真实情况以及其他最先进的细胞检测算法进行了比较。所提出的方法以F1分数=0.96实现了最佳的细胞检测准确率。

相似文献

1
Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.
IEEE Trans Med Imaging. 2016 Jun;35(6):1575-86. doi: 10.1109/TMI.2016.2520502. Epub 2016 Jan 21.
2
Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:383-390. doi: 10.1007/978-3-319-24574-4_46. Epub 2015 Nov 18.
3
Brain tumor classification and segmentation using sparse coding and dictionary learning.
Biomed Tech (Berl). 2016 Aug 1;61(4):413-29. doi: 10.1515/bmt-2015-0071.
4
Automatic Ki-67 counting using robust cell detection and online dictionary learning.
IEEE Trans Biomed Eng. 2014 Mar;61(3):859-70. doi: 10.1109/TBME.2013.2291703.
5
Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.
PLoS One. 2015 Nov 16;10(11):e0142403. doi: 10.1371/journal.pone.0142403. eCollection 2015.
6
Automatic polyp frame screening using patch based combined feature and dictionary learning.
Comput Med Imaging Graph. 2018 Nov;69:33-42. doi: 10.1016/j.compmedimag.2018.08.001. Epub 2018 Aug 22.
7
Metastasis detection from whole slide images using local features and random forests.
Cytometry A. 2017 Jun;91(6):555-565. doi: 10.1002/cyto.a.23089. Epub 2017 Apr 20.
8
A dictionary learning approach for human sperm heads classification.
Comput Biol Med. 2017 Dec 1;91:181-190. doi: 10.1016/j.compbiomed.2017.10.009. Epub 2017 Oct 10.
9
Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.
Comput Biol Med. 2017 Dec 1;91:69-79. doi: 10.1016/j.compbiomed.2017.10.003. Epub 2017 Oct 7.
10
Sparse Representation Over Learned Dictionaries on the Riemannian Manifold for Automated Grading of Nuclear Pleomorphism in Breast Cancer.
IEEE Trans Image Process. 2019 Mar;28(3):1248-1260. doi: 10.1109/TIP.2018.2877337. Epub 2018 Oct 22.

引用本文的文献

1
Automatic Brain Tumor Classification via Lion Plus Dragonfly Algorithm.
J Digit Imaging. 2022 Oct;35(5):1382-1408. doi: 10.1007/s10278-022-00635-6. Epub 2022 Jun 16.
2
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis.
IEEE Trans Med Imaging. 2022 Apr;41(4):757-770. doi: 10.1109/TMI.2020.3021387. Epub 2022 Apr 1.

本文引用的文献

1
AUTOMATED CELL COUNTING AND CLUSTER SEGMENTATION USING CONCAVITY DETECTION AND ELLIPSE FITTING TECHNIQUES.
Proc IEEE Int Symp Biomed Imaging. 2009 Jun-Jul;2009:795-798. doi: 10.1109/ISBI.2009.5193169. Epub 2009 Aug 7.
2
Automatic Myonuclear Detection in Isolated Single Muscle Fibers Using Robust Ellipse Fitting and Sparse Representation.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Jul-Aug;11(4):714-26. doi: 10.1109/TCBB.2013.151.
3
Classification of Histology Sections via Multispectral Convolutional Sparse Coding.
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3081-3088. doi: 10.1109/CVPR.2014.394.
4
Stacked Predictive Sparse Coding for Classification of Distinct Regions of Tumor Histopathology.
Proc IEEE Int Conf Comput Vis. 2013:169-176. doi: 10.1109/ICCV.2013.28.
5
Breast cancer histopathology image analysis: a review.
IEEE Trans Biomed Eng. 2014 May;61(5):1400-11. doi: 10.1109/TBME.2014.2303852.
6
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
7
Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):91-8. doi: 10.1007/978-3-642-40763-5_12.
8
Sparse representation of higher-order functional interaction patterns in task-based FMRI data.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):626-34. doi: 10.1007/978-3-642-40760-4_78.
9
Robust selection-based sparse shape model for lung cancer image segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):404-12. doi: 10.1007/978-3-642-40760-4_51.
10
Feature coding in image classification: a comprehensive study.
IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):493-506. doi: 10.1109/TPAMI.2013.113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验