Su Hai, Xing Fuyong, Yang Lin
IEEE Trans Med Imaging. 2016 Jun;35(6):1575-86. doi: 10.1109/TMI.2016.2520502. Epub 2016 Jan 21.
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96.
成功的诊断和预后分层、治疗结果预测以及治疗计划取决于可重复且准确的病理学分析。计算机辅助诊断(CAD)是帮助医生在癌症诊断和治疗中做出更好决策的有用工具。准确的细胞检测通常是后续细胞分析的基本前提。强大的脑肿瘤细胞核/细胞检测的主要挑战在于处理细胞外观的显著变化以及分离相互接触的细胞。在本文中,我们提出了一种使用稀疏重建和自适应字典学习的自动细胞检测框架。我们方法的主要贡献在于:1)一种基于稀疏重建的方法来分离相互接触的细胞;2)一种用于处理细胞外观变化的自适应字典学习方法。所提出的方法已在从32张全切片扫描图像中提取的包含2000多个细胞的数据集上进行了广泛测试。自动细胞检测结果与手动标注的真实情况以及其他最先进的细胞检测算法进行了比较。所提出的方法以F1分数=0.96实现了最佳的细胞检测准确率。