IEEE Trans Biomed Eng. 2014 Mar;61(3):859-70. doi: 10.1109/TBME.2013.2291703.
Ki-67 proliferation index is a valid and important biomarker to gauge neuroendocrine tumor (NET) cell progression within the gastrointestinal tract and pancreas. Automatic Ki-67 assessment is very challenging due to complex variations of cell characteristics. In this paper, we propose an integrated learning-based framework for accurate automatic Ki-67 counting for NET. The main contributions of our method are: 1) A robust cell counting and boundary delineation algorithm that is designed to localize both tumor and nontumor cells. 2) A novel online sparse dictionary learning method to select a set of representative training samples. 3) An automated framework that is used to differentiate tumor from nontumor cells (such as lymphocytes) and immunopositive from immunonegative tumor cells for the assessment of Ki-67 proliferation index. The proposed method has been extensively tested using 46 NET cases. The performance is compared with pathologists' manual annotations. The automatic Ki-67 counting is quite accurate compared with pathologists' manual annotations. This is much more accurate than existing methods.
Ki-67 增殖指数是一种有效的、重要的生物标志物,可用于评估胃肠道和胰腺神经内分泌肿瘤(NET)细胞的进展。由于细胞特征的复杂变化,自动 Ki-67 评估非常具有挑战性。在本文中,我们提出了一种基于集成学习的方法,用于准确地自动计算 NET 的 Ki-67 计数。我们方法的主要贡献有:1)一种稳健的细胞计数和边界描绘算法,旨在定位肿瘤细胞和非肿瘤细胞。2)一种新颖的在线稀疏字典学习方法,用于选择一组有代表性的训练样本。3)一种自动框架,用于区分肿瘤细胞与非肿瘤细胞(如淋巴细胞)以及免疫阳性与免疫阴性的肿瘤细胞,以评估 Ki-67 增殖指数。该方法已广泛应用于 46 例 NET 病例进行测试。并将其性能与病理学家的手动注释进行了比较。与病理学家的手动注释相比,自动 Ki-67 计数非常准确。这比现有的方法准确得多。