Suppr超能文献

基于狮鹫-蜻蜓算法的脑肿瘤自动分类。

Automatic Brain Tumor Classification via Lion Plus Dragonfly Algorithm.

机构信息

KGiSL Institute of Technology, Coimbatore, India.

Sri Ramakrishna Institute of Technology, Coimbatore, India.

出版信息

J Digit Imaging. 2022 Oct;35(5):1382-1408. doi: 10.1007/s10278-022-00635-6. Epub 2022 Jun 16.

Abstract

Denoising, skull stripping, segmentation, feature extraction, and classification are five important processes in this paper's development of a brain tumor classification model. The brain tumor image will be imposed first using the entropy-based trilateral filter to de-noising and this image is imposed to skull stripping by means of morphological partition and Otsu thresholding. Adaptive contrast limited fuzzy adaptive histogram equalization (CLFAHE) is also used in the segmentation process. The gray-level co-occurrence matrix (GLCM) characteristics are derived from the segmented image. The collected GLCM features are used in a hybrid classifier that combines the neural network (NN) and deep belief network (DBN) ideas. As an innovation, the hidden neurons of the two classifiers are modified ideally to improve the prediction model's accuracy. The hidden neurons are optimized using a unique hybrid optimization technique known as lion with dragonfly separation update (L-DSU), which integrates the approaches from both DA and LA. Finally, the suggested model's performance is compared to that of the standard models concerning certain performance measures.

摘要

去噪、颅骨剥离、分割、特征提取和分类是本文开发脑肿瘤分类模型的五个重要过程。首先使用基于熵的三边滤波器对脑肿瘤图像进行去噪处理,然后通过形态分割和 Otsu 阈值处理对颅骨进行剥离。在分割过程中还使用了自适应对比度受限模糊自适应直方图均衡化(CLFAHE)。从分割后的图像中提取灰度共生矩阵(GLCM)特征。收集的 GLCM 特征用于结合神经网络(NN)和深度置信网络(DBN)思想的混合分类器。作为一项创新,两个分类器的隐藏神经元经过理想的修改,以提高预测模型的准确性。使用一种独特的混合优化技术——狮子与蜻蜓分离更新(L-DSU)对隐藏神经元进行优化,该技术整合了 DA 和 LA 的方法。最后,根据某些性能指标,将所提出的模型的性能与标准模型进行比较。

相似文献

1
Automatic Brain Tumor Classification via Lion Plus Dragonfly Algorithm.
J Digit Imaging. 2022 Oct;35(5):1382-1408. doi: 10.1007/s10278-022-00635-6. Epub 2022 Jun 16.
2
Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.
J Med Eng Technol. 2015;39(8):498-507. doi: 10.3109/03091902.2015.1094148. Epub 2015 Oct 23.
3
A Clinical Support System for Brain Tumor Classification Using Soft Computing Techniques.
J Med Syst. 2019 Apr 13;43(5):144. doi: 10.1007/s10916-019-1266-9.
4
A robust grey wolf-based deep learning for brain tumour detection in MR images.
Biomed Tech (Berl). 2020 Apr 28;65(2):191-207. doi: 10.1515/bmt-2018-0244.
7
BirCat Optimization for Automatic Segmentation of Brain Tumors and Pixel Change Detection Using Post-operative MRI Images.
J Digit Imaging. 2023 Apr;36(2):647-665. doi: 10.1007/s10278-022-00704-w. Epub 2022 Dec 21.
8
MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm.
Asian Pac J Cancer Prev. 2018 Nov 29;19(11):3257-3263. doi: 10.31557/APJCP.2018.19.11.3257.
9
An Intelligent System to Enhance the Performance of Brain Tumor Diagnosis from MR Images.
J Digit Imaging. 2023 Apr;36(2):510-525. doi: 10.1007/s10278-022-00715-7. Epub 2022 Nov 16.

引用本文的文献

本文引用的文献

1
3
Hallux rigidus treated with adipose-derived mesenchymal stem cells: A case report.
World J Orthop. 2021 Jan 18;12(1):51-55. doi: 10.5312/wjo.v12.i1.51.
4
EVALUATION OF THE RADIATION DOSE TO THE HANDS OF ORTHOPAEDIC SURGEONS DURING FLUOROSCOPY USING STORED IMAGES.
Radiat Prot Dosimetry. 2020 Jul 13;189(2):157-162. doi: 10.1093/rpd/ncaa026.
6
Concatenated and Connected Random Forests With Multiscale Patch Driven Active Contour Model for Automated Brain Tumor Segmentation of MR Images.
IEEE Trans Med Imaging. 2018 Aug;37(8):1943-1954. doi: 10.1109/TMI.2018.2805821. Epub 2018 Feb 13.
8
Sparse Representation-Based Radiomics for the Diagnosis of Brain Tumors.
IEEE Trans Med Imaging. 2018 Apr;37(4):893-905. doi: 10.1109/TMI.2017.2776967.
9
Previously Undiagnosed Malignant Brain Tumor Discovered During Examination of a Patient Seeking Chiropractic Care.
J Chiropr Med. 2016 Mar;15(1):42-6. doi: 10.1016/j.jcm.2016.02.004. Epub 2016 Mar 25.
10
Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.
IEEE Trans Med Imaging. 2016 Jun;35(6):1575-86. doi: 10.1109/TMI.2016.2520502. Epub 2016 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验