Suppr超能文献

使用凹度检测和椭圆拟合技术的自动细胞计数与聚类分割

AUTOMATED CELL COUNTING AND CLUSTER SEGMENTATION USING CONCAVITY DETECTION AND ELLIPSE FITTING TECHNIQUES.

作者信息

Kothari Sonal, Chaudry Qaiser, Wang May D

机构信息

Electrical and Computer Engineering, Georgia Institute of Technology.

Electrical and Computer Engineering, Georgia Institute of Technology; Biomedical Engineering, Georgia Institute of Technology and Emory University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2009 Jun-Jul;2009:795-798. doi: 10.1109/ISBI.2009.5193169. Epub 2009 Aug 7.

Abstract

This paper presents a novel, fast and semi-automatic method for accurate cell cluster segmentation and cell counting of digital tissue image samples. In pathological conditions, complex cell clusters are a prominent feature in tissue samples. Segmentation of these clusters is a major challenge for development of an accurate cell counting methodology. We address the issue of cluster segmentation by following a three step process. The first step involves pre-processing required to obtain the appropriate nuclei cluster boundary image from the RGB tissue samples. The second step involves concavity detection at the edge of a cluster to find the points of overlap between two nuclei. The third step involves segmentation at these concavities by using an ellipse-fitting technique. Once the clusters are segmented, individual nuclei are counted to give the cell count. The method was tested on four different types of cancerous tissue samples and shows promising results with a low percentage error, high true positive rate and low false discovery rate.

摘要

本文提出了一种新颖、快速且半自动的方法,用于对数字组织图像样本进行精确的细胞簇分割和细胞计数。在病理状况下,复杂的细胞簇是组织样本中的一个突出特征。这些簇的分割是开发精确细胞计数方法的一项重大挑战。我们通过以下三个步骤来解决簇分割问题。第一步涉及从RGB组织样本中获取合适的细胞核簇边界图像所需的预处理。第二步涉及在簇边缘进行凹度检测,以找到两个细胞核之间的重叠点。第三步涉及通过使用椭圆拟合技术在这些凹度处进行分割。一旦簇被分割,就对单个细胞核进行计数以得出细胞计数。该方法在四种不同类型的癌组织样本上进行了测试,结果显示出有前景的结果,具有低百分比误差、高真阳性率和低错误发现率。

相似文献

引用本文的文献

4
Fusion in Breast Cancer Histology Classification.乳腺癌组织学分类中的融合
ACM BCB. 2019 Sep;2019:485-493. doi: 10.1145/3307339.3342166.
9
Robust Cell Segmentation for Histological Images of Glioblastoma.胶质母细胞瘤组织学图像的稳健细胞分割
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:1041-1045. doi: 10.1109/ISBI.2016.7493444. Epub 2016 Jun 16.
10
Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer.组织学图像特征挖掘揭示肾癌的新诊断特性。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2011 Nov;2011:422-425. doi: 10.1109/BIBM.2011.112. Epub 2012 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验