Suppr超能文献

血清聚糖作为非小细胞肺癌的风险标志物

Serum Glycans as Risk Markers for Non-Small Cell Lung Cancer.

作者信息

Ruhaak L Renee, Stroble Carol, Dai Jianliang, Barnett Matt, Taguchi Ayumu, Goodman Gary E, Miyamoto Suzanne, Gandara David, Feng Ziding, Lebrilla Carlito B, Hanash Samir

机构信息

Department of Chemistry, University of California Davis, Davis, California. Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Chemistry, University of California Davis, Davis, California. Division of Hematology and Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California.

出版信息

Cancer Prev Res (Phila). 2016 Apr;9(4):317-23. doi: 10.1158/1940-6207.CAPR-15-0033. Epub 2016 Jan 26.

Abstract

Previous studies have suggested occurrence of altered serum glycan profiles in patients with lung cancer. Here, we aimed to determine the predictive value of serum glycans to distinguish non-small cell lung cancer (NSCLC) cases from controls in prediagnostic samples using a previously validated predictive protein marker pro-SFTPB, as anchor. Blinded prediagnostic serum samples were obtained from the Carotene and Retinol Efficacy Trial (CARET), and included a discovery set of 100 NSCLC cases and 199 healthy controls. A second test set consisted of 108 cases and 216 controls. Cases and controls were matched for age at baseline (5-year groups), sex, smoking status (current vs. former), study enrollment cohort, and date of blood draw. Serum glycan profiles were determined by mass spectrometry. Twelve glycan variables were identified to have significant discriminatory power between cases and controls in the discovery set (AUC > 0.6). Of these, four were confirmed in the independent validation set. A combination marker yielded AUCs of 0.74 and 0.64 in the discovery and test set, respectively. Four glycan variables exhibited significant incremental value when combined with pro-SFTPB compared with pro-SFTPB alone with AUCs of 0.73, 0.72, 0.72, and 0.72 in the test set, indicating that serum glycan signatures have relevance to risk assessment for NSCLC.

摘要

以往的研究表明,肺癌患者血清聚糖谱会发生改变。在此,我们旨在以先前验证的预测性蛋白质标志物pro - SFTPB为锚定物,确定血清聚糖在诊断前样本中区分非小细胞肺癌(NSCLC)病例与对照的预测价值。从胡萝卜素和视黄醇功效试验(CARET)中获取了盲法诊断前血清样本,其中包括一个由100例NSCLC病例和199例健康对照组成的发现集。第二个测试集由108例病例和216例对照组成。病例和对照在基线年龄(5年分组)、性别、吸烟状态(当前吸烟者与既往吸烟者)、研究入组队列以及采血日期方面进行了匹配。通过质谱法测定血清聚糖谱。在发现集中,有12个聚糖变量被确定在病例和对照之间具有显著的区分能力(曲线下面积[AUC] > 0.6)。其中,有4个在独立验证集中得到了证实。一个组合标志物在发现集和测试集中的AUC分别为0.74和0.64。与单独使用pro - SFTPB相比,4个聚糖变量与pro - SFTPB联合使用时在测试集中表现出显著的增加值,AUC分别为0.73、0.72、0.72和0.72,这表明血清聚糖特征与NSCLC的风险评估相关。

相似文献

1
Serum Glycans as Risk Markers for Non-Small Cell Lung Cancer.
Cancer Prev Res (Phila). 2016 Apr;9(4):317-23. doi: 10.1158/1940-6207.CAPR-15-0033. Epub 2016 Jan 26.
3
Pro-surfactant protein B as a biomarker for lung cancer prediction.
J Clin Oncol. 2013 Dec 20;31(36):4536-43. doi: 10.1200/JCO.2013.50.6105. Epub 2013 Nov 18.
5
Experimental study of peripheral-blood pro-surfactant protein B for screening non-small cell lung cancer.
Acta Cir Bras. 2017 Jul;32(7):568-575. doi: 10.1590/s0102-865020170070000008.
6
Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins.
JAMA Oncol. 2018 Oct 1;4(10):e182078. doi: 10.1001/jamaoncol.2018.2078. Epub 2018 Oct 11.
8
A circulating non-coding RNA panel as an early detection predictor of non-small cell lung cancer.
Life Sci. 2016 Apr 15;151:235-242. doi: 10.1016/j.lfs.2016.03.002. Epub 2016 Mar 2.
9
Circulating pro-surfactant protein B as a risk biomarker for lung cancer.
Cancer Epidemiol Biomarkers Prev. 2013 Oct;22(10):1756-61. doi: 10.1158/1055-9965.EPI-13-0251. Epub 2013 Jul 29.

引用本文的文献

2
Integration of RNAseq transcriptomics and -glycomics reveal biosynthetic pathways and predict structure-specific -glycan expression.
Chem Sci. 2025 Apr 4;16(17):7155-7172. doi: 10.1039/d5sc00467e. eCollection 2025 Apr 30.
3
Serum N-Glycomics with Nano-LC-QToF LC-MS/MS Reveals N-Glycan Biomarkers for Glioblastoma, Meningioma, and High-Grade Meningioma.
J Proteome Res. 2025 Mar 7;24(3):1402-1413. doi: 10.1021/acs.jproteome.4c01090. Epub 2025 Feb 5.
6
-Glycan and Glycopeptide Serum Biomarkers in Philippine Lung Cancer Patients Identified Using Liquid Chromatography-Tandem Mass Spectrometry.
ACS Omega. 2022 Oct 26;7(44):40230-40240. doi: 10.1021/acsomega.2c05111. eCollection 2022 Nov 8.
9
Machine Learning Based Analysis of Human Serum glycome Alterations to Follow up Lung Tumor Surgery.
Cancers (Basel). 2020 Dec 9;12(12):3700. doi: 10.3390/cancers12123700.

本文引用的文献

3
The Serum Immunoglobulin G Glycosylation Signature of Gastric Cancer.
EuPA Open Proteom. 2015 Mar 1;6:1-9. doi: 10.1016/j.euprot.2014.11.002.
5
Cancer statistics, 2014.
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.
6
Pro-surfactant protein B as a biomarker for lung cancer prediction.
J Clin Oncol. 2013 Dec 20;31(36):4536-43. doi: 10.1200/JCO.2013.50.6105. Epub 2013 Nov 18.
7
Circulating pro-surfactant protein B as a risk biomarker for lung cancer.
Cancer Epidemiol Biomarkers Prev. 2013 Oct;22(10):1756-61. doi: 10.1158/1055-9965.EPI-13-0251. Epub 2013 Jul 29.
8
Quantitative analysis of serum IgG galactosylation assists differential diagnosis of ovarian cancer.
J Proteome Res. 2013 Sep 6;12(9):4046-55. doi: 10.1021/pr4003992. Epub 2013 Jul 26.
9
Enrichment strategies in glycomics-based lung cancer biomarker development.
Proteomics Clin Appl. 2013 Oct;7(9-10):664-76. doi: 10.1002/prca.201200131. Epub 2013 Aug 6.
10
Chip-based nLC-TOF-MS is a highly stable technology for large-scale high-throughput analyses.
Anal Bioanal Chem. 2013 May;405(14):4953-8. doi: 10.1007/s00216-013-6908-z. Epub 2013 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验