Kravets Elisabeth, Degrandi Daniel, Ma Qijun, Peulen Thomas-Otavio, Klümpers Verena, Felekyan Suren, Kühnemuth Ralf, Weidtkamp-Peters Stefanie, Seidel Claus Am, Pfeffer Klaus
Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
Elife. 2016 Jan 27;5:e11479. doi: 10.7554/eLife.11479.
GBPs are essential for immunity against intracellular pathogens, especially for Toxoplasma gondii control. Here, the molecular interactions of murine GBPs (mGBP1/2/3/5/6), homo- and hetero-multimerization properties of mGBP2 and its function in parasite killing were investigated by mutational, Multiparameter Fluorescence Image Spectroscopy, and live cell microscopy methodologies. Control of T. gondii replication by mGBP2 requires GTP hydrolysis and isoprenylation thus, enabling reversible oligomerization in vesicle-like structures. mGBP2 undergoes structural transitions between monomeric, dimeric and oligomeric states visualized by quantitative FRET analysis. mGBPs reside in at least two discrete subcellular reservoirs and attack the parasitophorous vacuole membrane (PVM) as orchestrated, supramolecular complexes forming large, densely packed multimers comprising up to several thousand monomers. This dramatic mGBP enrichment results in the loss of PVM integrity, followed by a direct assault of mGBP2 upon the plasma membrane of the parasite. These discoveries provide vital dynamic and molecular perceptions into cell-autonomous immunity.
鸟苷结合蛋白(GBPs)对于抵抗细胞内病原体的免疫反应至关重要,尤其是对于控制弓形虫。在此,通过突变、多参数荧光图像光谱法和活细胞显微镜方法,研究了小鼠GBPs(mGBP1/2/3/5/6)的分子相互作用、mGBP2的同源和异源多聚化特性及其在杀灭寄生虫中的功能。mGBP2对弓形虫复制的控制需要GTP水解和异戊二烯化,从而在囊泡样结构中实现可逆的寡聚化。通过定量FRET分析可以观察到,mGBP2在单体、二聚体和寡聚体状态之间发生结构转变。mGBPs存在于至少两个离散的亚细胞区域,并作为精心编排的超分子复合物攻击寄生泡膜(PVM),形成由多达数千个单体组成的大型、紧密堆积的多聚体。这种显著的mGBP富集导致PVM完整性丧失,随后mGBP2直接攻击寄生虫的质膜。这些发现为细胞自主免疫提供了重要的动态和分子见解。