Suppr超能文献

一种用于整合不同平台基因表达谱的半参数统计模型。

A semi-parametric statistical model for integrating gene expression profiles across different platforms.

作者信息

Lyu Yafei, Li Qunhua

机构信息

The Huck Institute of Life Science, Pennsylvania State University, University Park, PA, 16802, USA.

Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

BMC Bioinformatics. 2016 Jan 11;17 Suppl 1(Suppl 1):5. doi: 10.1186/s12859-015-0847-y.

Abstract

BACKGROUND

Determining differentially expressed genes (DEGs) between biological samples is the key to understand how genotype gives rise to phenotype. RNA-seq and microarray are two main technologies for profiling gene expression levels. However, considerable discrepancy has been found between DEGs detected using the two technologies. Integration data across these two platforms has the potential to improve the power and reliability of DEG detection.

METHODS

We propose a rank-based semi-parametric model to determine DEGs using information across different sources and apply it to the integration of RNA-seq and microarray data. By incorporating both the significance of differential expression and the consistency across platforms, our method effectively detects DEGs with moderate but consistent signals. We demonstrate the effectiveness of our method using simulation studies, MAQC/SEQC data and a synthetic microRNA dataset.

CONCLUSIONS

Our integration method is not only robust to noise and heterogeneity in the data, but also adaptive to the structure of data. In our simulations and real data studies, our approach shows a higher discriminate power and identifies more biologically relevant DEGs than eBayes, DEseq and some commonly used meta-analysis methods.

摘要

背景

确定生物样本之间的差异表达基因(DEG)是理解基因型如何产生表型的关键。RNA测序(RNA-seq)和微阵列是分析基因表达水平的两种主要技术。然而,使用这两种技术检测到的DEG之间存在相当大的差异。整合这两个平台的数据有可能提高DEG检测的效能和可靠性。

方法

我们提出一种基于秩的半参数模型,利用来自不同来源的信息来确定DEG,并将其应用于RNA-seq和微阵列数据的整合。通过结合差异表达的显著性和跨平台的一致性,我们的方法有效地检测出具有适度但一致信号的DEG。我们使用模拟研究、MAQC/SEQC数据和一个合成的微小RNA数据集证明了我们方法的有效性。

结论

我们的整合方法不仅对数据中的噪声和异质性具有鲁棒性,而且对数据结构具有适应性。在我们的模拟和实际数据研究中,我们的方法比eBayes、DEseq和一些常用的荟萃分析方法显示出更高的辨别力,并识别出更多具有生物学相关性的DEG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/234a/4895261/370e87f739c4/12859_2015_847_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验