Guo Peixuan, Noji Hiroyuki, Yengo Christopher M, Zhao Zhengyi, Grainge Ian
College of Pharmacy, The Ohio State University, Columbus, Ohio, USA Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA Nanobiotechnology Center, University of Kentucky, Lexington, Kentucky, USA Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan.
Microbiol Mol Biol Rev. 2016 Jan 27;80(1):161-86. doi: 10.1128/MMBR.00056-15. Print 2016 Mar.
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
线性马达和旋转马达。2013年,发现了第三种生物马达,即无旋转的公转马达(http://rnanano.osu.edu/movie.html),并发现其广泛存在于细菌、真核病毒和双链DNA(dsDNA)噬菌体中。本综述重点关注了各种已充分研究的马达在多个方面的最新发现,包括手性、化学计量、通道大小、熵、构象变化和能量使用率等,这些马达包括F₀F₁ATP合酶、解旋酶、病毒dsDNA包装马达、细菌染色体转位酶、肌球蛋白、驱动蛋白和动力蛋白。特别是,dsDNA转位酶被用于说明这些特征如何与运动机制相关,以及自然界如何巧妙地进化出一种公转机制,以避免在细胞分裂过程中长链dsDNA基因组运输时发生缠绕。马达的手性和通道大小是区分旋转马达和公转马达的两个因素。旋转马达使用右手通道来驱动右手dsDNA,类似于螺母以相同方向驱动有螺纹的螺栓;公转马达使用左手马达通道来使右手dsDNA公转。旋转马达使用小通道(直径<2 nm),以便通道壁与单链DNA(ssDNA)或2 nm的dsDNA螺栓紧密接触;公转马达使用较大的通道(>3 nm),为螺栓的公转留出空间。ATP的结合和水解与马达中不同的构象熵变化相关联,这会导致对底物的亲和力改变,并允许完成工作,例如,解旋酶解开DNA或转位酶使DNA定向移动。