Suppr超能文献

用于RNA/DNA纳米结构单分子操纵的光镊和全内反射荧光显微镜,包括其橡胶状特性和单分子计数。

Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting.

作者信息

Ghimire Chiran, Guo Peixuan

机构信息

Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; College of Medicine; James Compréhensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Biophys Rep. 2021 Dec 31;7(6):449-474. doi: 10.52601/bpr.2021.210003.

Abstract

Life science is often focused on the microscopic level. Single-molecule technology has been used to observe components at the micro- or nanoscale. Single-molecule imaging provides unprecedented information about the behavior of individual molecules in contrast to the information from ensemble methods that average the information of many molecules in various states. A typical feature of living systems is motion. The lack of synchronicity of motion biomachines in living systems makes it challenging to image the motion process with high resolution. Thus, single-molecule technology is especially useful for real-time study on motion mechanism of biomachines, such as viral DNA packaging motor, or other ATPases. The most common optical instrumentations in single-molecule studies are optical tweezers and single molecule total internal refection fluorescence microscopy (smTIRF). Optical tweezers are the force-based technique. The analysis of RNA using optical tweezer has led to the discovery of the rubbery or amoeba property of RNA nanoparticles for compelling vessel extravasation to enhance tumor targeting and fast renal excretion. The rubbery property of RNA lends mechanistic evidence for RNAs use as an ideal reagent in cancer treatment with undetectable toxicity. Single molecule photobleaching allows for the direct counting of biomolecules. This technique was invented for single molecule counting of RNA in the phi29 DNA packaging motor to resolve the debate between five and six copies of RNA in the motor. The technology has subsequently extended to counting components in biological machines composed of protein, DNA, and other macromolecules. In combination with statistical analysis, it reveals biomolecular mechanisms in detail and leads to the development of ultra-sensitive sensors in diagnosis and forensics. This review focuses on the applications of optical tweezers and fluorescence-based techniques as single-molecule technologies to resolve mechanistic questions related to RNA and DNA nanostructures.

摘要

生命科学通常聚焦于微观层面。单分子技术已被用于在微观或纳米尺度上观察组件。与对处于各种状态的许多分子的信息进行平均的整体方法所提供的信息相比,单分子成像提供了关于单个分子行为的前所未有的信息。生命系统的一个典型特征是运动。生命系统中生物机器运动缺乏同步性,这使得以高分辨率对运动过程进行成像具有挑战性。因此,单分子技术对于实时研究生物机器的运动机制特别有用,例如病毒DNA包装马达或其他ATP酶。单分子研究中最常见的光学仪器是光镊和单分子全内反射荧光显微镜(smTIRF)。光镊是基于力的技术。使用光镊对RNA进行分析,导致发现了RNA纳米颗粒的橡胶状或变形虫状特性,这种特性可促使血管外渗,以增强肿瘤靶向性和快速肾脏排泄。RNA的橡胶状特性为RNA作为一种具有不可检测毒性的癌症治疗理想试剂提供了机制证据。单分子光漂白允许直接计数生物分子。这项技术是为了对phi29 DNA包装马达中的RNA进行单分子计数而发明的,以解决关于马达中RNA是五个还是六个拷贝的争论。该技术随后扩展到对由蛋白质、DNA和其他大分子组成的生物机器中的组件进行计数。与统计分析相结合,它详细揭示了生物分子机制,并导致了诊断和法医领域超灵敏传感器的发展。本综述重点介绍了光镊和基于荧光的技术作为单分子技术在解决与RNA和DNA纳米结构相关的机制问题方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99a3/10210058/7927dc931d57/br-7-6-449-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验