Suppr超能文献

利用人工神经网络预测隧道施工中的土体变形

Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.

作者信息

Lai Jinxing, Qiu Junling, Feng Zhihua, Chen Jianxun, Fan Haobo

机构信息

Shaanxi Provincial Major Laboratory for Highway Bridge & Tunnel, Chang'an University, Xi'an 710064, China; School of Highway, Chang'an University, Xi'an 710064, China.

School of Highway, Chang'an University, Xi'an 710064, China.

出版信息

Comput Intell Neurosci. 2016;2016:6708183. doi: 10.1155/2016/6708183. Epub 2015 Dec 24.

Abstract

In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.

摘要

在过去几十年里,作为分析棘手岩土工程问题的一种新工具,人工神经网络(ANNs)已成功应用于解决许多工程问题,包括各类岩体中隧道掘进引起的变形。与必须假定近似函数某种形式的经典回归方法不同,人工神经网络不需要复杂的本构模型。此外,据追踪,人工神经网络预测系统是预测岩体变形最有效的方法之一。此外,可以设想,人工神经网络在未来隧道掘进位移的动态预测中将更加可行,特别是如果将人工神经网络模型与其他研究方法相结合。在本文中,我们总结了人工神经网络在隧道变形预测方面的最新进展和未来研究挑战。还介绍了应用案例以及人工神经网络模型的改进。所提出的人工神经网络模型可作为有效预测隧道变形的基准,具有非线性、高度并行性、容错性、学习和泛化能力等特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffc8/4706869/6a32efe805af/CIN2016-6708183.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验