Suppr超能文献

用于组装无机、有机和生物纳米结构的热力学一致力场:INTERFACE 力场。

Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

机构信息

Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.

出版信息

Langmuir. 2013 Feb 12;29(6):1754-65. doi: 10.1021/la3038846. Epub 2013 Jan 16.

Abstract

The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and nanomechanics. Limitations and opportunities for further development are also described.

摘要

使用模拟工具和实验室仪器可以更有效地理解 1 到 1000nm 范围内生物-非生物界面的分子识别和组装的复杂性。我们讨论了原子力场的当前能力和局限性,并解释了一种为过去十年开发和测试的获得无机化合物可靠参数的策略。参数开发包括几种硅酸盐、铝酸盐、金属、氧化物、硫酸盐和磷灰石,这些都在我们称之为 INTERFACE 力场的内容中进行了总结。INTERFACE 力场作为常见的调和力场(PCFF、COMPASS、CHARMM、AMBER、GROMACS 和 OPLS-AA)的扩展,通过采用相同的功能形式和组合规则,能够模拟无机-有机和无机-生物分子界面。参数化是基于对原子尺度上物理化学性质的深入了解,为每个参数,特别是原子电荷和范德华常数分配参数,以及为每个化合物在与测量值比较的情况下验证宏观物理化学性质。该方法消除了使用其他参数化方案计算和测量的高达 2 个数量级的体相和表面性质之间的大差异,并通过引入热力学一致性提高了参数的可转移性。结果,包括密度、表面能、固-水界面张力、不同晶体面的界面能各向异性、生物分子的吸附能以及热和力学性质在内的广泛性质可以与实验进行定量比较。应用包括深入了解无机-有机多相材料的组装、生物分子对无机晶面的识别、纳米晶体和纳米颗粒的生长和形状偏好,以及热转变和纳米力学。还描述了进一步发展的限制和机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验