Suppr超能文献

在r面蓝宝石上外延横向生长非极性a面氮化镓的空间分辨和取向相关拉曼映射。

Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire.

作者信息

Jiang Teng, Xu Sheng-Rui, Zhang Jin-Cheng, Xie Yong, Hao Yue

机构信息

Wide Bandap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China.

School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China.

出版信息

Sci Rep. 2016 Jan 29;6:19955. doi: 10.1038/srep19955.

Abstract

Uncoalesced a-plane GaN epitaxial lateral overgrowth (ELO) structures have been synthesized along two mask stripe orientations on a-plane GaN template by MOCVD. The morphology of two ELO GaN structures is performed by Scanning electronic microscopy. The anisotropy of crystalline quality and stress are investigated by micro-Raman spectroscopy. According to the Raman mapping spectra, the variations on the intensity, peak shift and the full width at half maximum (FWHM) of GaN E2 (high) peak indicate that the crystalline quality improvement occurs in the window region of the GaN stripes along [0001], which is caused by the dislocations bending towards the sidewalls. Conversely, the wing regions have better quality with less stress as the dislocations propagated upwards when the GaN stripes are along []. Spatial cathodoluminescence mapping results further support the explanation for the different dislocation growth mechanisms in the ELO processes with two different mask stripe orientations.

摘要

通过金属有机化学气相沉积(MOCVD)在a面GaN模板上沿两个掩膜条纹取向合成了未合并的a面GaN外延横向生长(ELO)结构。通过扫描电子显微镜对两种ELO GaN结构的形貌进行了表征。利用显微拉曼光谱研究了晶体质量和应力的各向异性。根据拉曼映射光谱,GaN E2(高)峰的强度、峰位移动和半高宽(FWHM)的变化表明,沿[0001]方向的GaN条纹窗口区域的晶体质量得到改善,这是由位错向侧壁弯曲引起的。相反,当GaN条纹沿[]方向时,随着位错向上传播,翼区具有更好的质量和更小的应力。空间阴极发光映射结果进一步支持了对两种不同掩膜条纹取向的ELO过程中不同位错生长机制的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b831/4731808/e83efc1d2f45/srep19955-f1.jpg

相似文献

2
Epitaxial Lateral Overgrowth of GaN on a Laser-Patterned Graphene Mask.
Nanomaterials (Basel). 2023 Feb 20;13(4):784. doi: 10.3390/nano13040784.
3
4
Integration of GaN and Diamond Using Epitaxial Lateral Overgrowth.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39397-39404. doi: 10.1021/acsami.0c10065. Epub 2020 Aug 20.
5
Dislocation propagation in GaN films formed by epitaxial lateral overgrowth.
J Electron Microsc (Tokyo). 2000;49(2):323-30. doi: 10.1093/oxfordjournals.jmicro.a023812.
6
Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.
ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21480-9. doi: 10.1021/acsami.6b07044. Epub 2016 Aug 15.
8
Structural Anisotropy and Optical Properties of Nonpolar a-Plane GaN Epitaxial Layers.
J Nanosci Nanotechnol. 2015 Oct;15(10):7787-90. doi: 10.1166/jnn.2015.11188.
9
High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):43386-43392. doi: 10.1021/acsami.7b14801. Epub 2017 Nov 30.
10
Effective Chemical Lift-Off for Air-Tunnel GaN on a Trapezoid-Patterned Sapphire Substrate.
Micromachines (Basel). 2023 Mar 29;14(4):753. doi: 10.3390/mi14040753.

引用本文的文献

1
Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates.
Materials (Basel). 2020 Nov 13;13(22):5118. doi: 10.3390/ma13225118.
2

本文引用的文献

2
Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters.
Opt Express. 2007 Jul 23;15(15):9357-65. doi: 10.1364/oe.15.009357.
3
Dislocation propagation in GaN films formed by epitaxial lateral overgrowth.
J Electron Microsc (Tokyo). 2000;49(2):323-30. doi: 10.1093/oxfordjournals.jmicro.a023812.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验