Wu Jinxing, Li Peixian, Xu Shengrui, Zhou Xiaowei, Tao Hongchang, Yue Wenkai, Wang Yanli, Wu Jiangtao, Zhang Yachao, Hao Yue
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China.
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China.
Materials (Basel). 2020 Nov 13;13(22):5118. doi: 10.3390/ma13225118.
Magnetron sputtering is adopted to deposit ~25 nm thick AlN on the surface of hexagonal BN(h-BN)/sapphire substrates, followed by epitaxial GaN growth on top of the AlN/h-BN/sapphire substrate using a metal-organic chemical vapor deposition system. Compared to GaN grown on the h-BN/sapphire surface directly, this method results in a continuous and smooth GaN film with a smaller root mean square roughness. Besides, the introduction of the sputtered AlN layer reduces the dislocation density of GaN by 35.7%. We provide a pathway of GaN epitaxy on the h-BN surface, which significantly improves its surface morphology and crystal quality.
采用磁控溅射在六方氮化硼(h-BN)/蓝宝石衬底表面沉积约25 nm厚的AlN,然后使用金属有机化学气相沉积系统在AlN/h-BN/蓝宝石衬底顶部进行GaN外延生长。与直接在h-BN/蓝宝石表面生长的GaN相比,该方法得到的GaN薄膜连续且光滑,均方根粗糙度更小。此外,溅射的AlN层的引入使GaN的位错密度降低了35.7%。我们提供了一种在h-BN表面进行GaN外延的途径,显著改善了其表面形貌和晶体质量。