Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Photovoltaic Materials Unit, National Institute for Materials Science (NIMS) , 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
ACS Appl Mater Interfaces. 2016 Feb;8(7):4644-50. doi: 10.1021/acsami.5b11286. Epub 2016 Feb 15.
Low-temperature solution-processed perovskite solar cells are attracting immense interest due to their ease of fabrication and potential for mass production on flexible substrates. However, the unfavorable surface properties of planar substrates often lead to large variations in perovskite crystal size and weak charge extractions at interfaces, resulting in inferior performance. Here, we report the improved performance, reproducibility, and high stability of "p-i-n" planar heterojunction perovskite solar cells. The key fabrication process is the addition of the amine-polymer poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-P1) to a simple spin-coating process. The PFN-P1 works as a surfactant and helps promote uniform crystallization. As a result, perovskite films with PFN-P1 have a uniform distribution of grain sizes and improved open circuit voltage. Devices with PFN-P1 showed the best efficiency (13.2%), with a small standard deviation (0.40), out of 60 cells. Moreover, ∼90% of the initial efficiency was retained over more than 6 months. Additionally, devices fabricated from PFN-P1 mixed perovskite films showed higher stability under continuous operation at maximum power point over 150 h. Our results show that this approach is simple and effective for improving device performance, reproducibility, and stability by modifying perovskite properties with PFN-P1. Because of the simplicity of the fabrication process and reliable performance increase, this approach marks important progress in low-temperature solution-processed perovskite solar cells.
低温溶液处理的钙钛矿太阳能电池因其易于制造和在柔性衬底上进行大规模生产的潜力而引起了极大的兴趣。然而,平面衬底的不利表面性质通常会导致钙钛矿晶体尺寸的较大变化和界面处较弱的电荷提取,从而导致性能下降。在这里,我们报告了“p-i-n”平面异质结钙钛矿太阳能电池性能、重现性和高稳定性的提高。关键的制造工艺是在简单的旋涂工艺中添加胺聚合物聚[(9,9-双(3'-(N,N-二甲基氨基)丙基)-2,7-芴)-交替-2,7-(9,9-二辛基芴)](PFN-P1)。PFN-P1 作为表面活性剂,可以帮助促进均匀结晶。结果,具有 PFN-P1 的钙钛矿薄膜具有均匀的晶粒尺寸分布和改善的开路电压。在 60 个电池中,具有 PFN-P1 的器件表现出最佳的效率(13.2%),具有较小的标准偏差(0.40)。此外,在超过 6 个月的时间里,初始效率的约 90%得以保留。此外,在最大功率点下连续运行超过 150 小时,用 PFN-P1 混合钙钛矿薄膜制造的器件表现出更高的稳定性。我们的结果表明,通过用 PFN-P1 修饰钙钛矿特性,这种方法是一种简单而有效的提高器件性能、重现性和稳定性的方法。由于制造工艺简单且性能可靠提高,这种方法标志着低温溶液处理的钙钛矿太阳能电池的重要进展。