Li Dan, Sun Chen, Li Hao, Shi Hui, Shai Xuxia, Sun Qiang, Han Junbo, Shen Yan, Yip Hin-Lap, Huang Fei, Wang Mingkui
Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China . Email:
Institute of Polymer Optoelectronic Materials and Devices , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou , Guangdong 510640 , China . Email:
Chem Sci. 2017 Jun 1;8(6):4587-4594. doi: 10.1039/c7sc00077d. Epub 2017 Apr 19.
In this study, for the first time, we report a solution-processed amino-functionalized copolymer semiconductor (PFN-2TNDI) with a conjugated backbone composed of fluorine, naphthalene diimide, and thiophene spacers as the electron transporting layer (ETL) in n-i-p planar structured perovskite solar cells. Using this copolymer semiconductor in conjunction with a planar n-i-p heterojunction, we achieved an unprecedented efficiency of ∼16% under standard illumination test conditions. More importantly, the perovskite devices using this polymer ETL have shown good stability under constant ultra violet (UV) light soaking during 3000 h of accelerated tests. Various advanced spectroscopic characterizations, including ultra-fast spectroscopy, ultra-violet photoelectron spectroscopy and electronic impedance spectroscopy, elucidate that the interaction between the functional polymer ETL and the perovskite layer plays a critical role in trap passivation and thus, the device UV-photostability. We expect that these results will boost the development of low temperature solution-processed organic ETL materials, which is essential for the commercialization of high-performance and stable, flexible perovskite solar cells.
在本研究中,我们首次报道了一种通过溶液法制备的氨基官能化共聚物半导体(PFN-2TNDI),其共轭主链由氟、萘二亚胺和噻吩间隔基组成,用作n-i-p平面结构钙钛矿太阳能电池的电子传输层(ETL)。将这种共聚物半导体与平面n-i-p异质结结合使用,在标准光照测试条件下,我们实现了前所未有的约16%的效率。更重要的是,使用这种聚合物ETL的钙钛矿器件在3000小时加速测试期间的持续紫外(UV)光浸泡下表现出良好的稳定性。各种先进的光谱表征,包括超快光谱、紫外光电子能谱和电子阻抗谱,表明功能性聚合物ETL与钙钛矿层之间的相互作用在陷阱钝化中起关键作用,进而影响器件的紫外光稳定性。我们期望这些结果将推动低温溶液法制备的有机ETL材料的发展,这对于高性能、稳定的柔性钙钛矿太阳能电池的商业化至关重要。