Lin Lan, Jiang Peng, Park Juw Won, Wang Jinkai, Lu Zhi-Xiang, Lam Maggie P Y, Ping Peipei, Xing Yi
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53707, USA.
Genome Biol. 2016 Jan 28;17:15. doi: 10.1186/s13059-016-0876-5.
Alu elements are major contributors to lineage-specific new exons in primate and human genomes. Recent studies indicate that some Alu exons have high transcript inclusion levels or tissue-specific splicing profiles, and may play important regulatory roles in modulating mRNA degradation or translational efficiency. However, the contribution of Alu exons to the human proteome remains unclear and controversial. The prevailing view is that exons derived from young repetitive elements, such as Alu elements, are restricted to regulatory functions and have not had adequate evolutionary time to be incorporated into stable, functional proteins.
We adopt a proteotranscriptomics approach to systematically assess the contribution of Alu exons to the human proteome. Using RNA sequencing, ribosome profiling, and proteomics data from human tissues and cell lines, we provide evidence for the translational activities of Alu exons and the presence of Alu exon derived peptides in human proteins. These Alu exon peptides represent species-specific protein differences between primates and other mammals, and in certain instances between humans and closely related primates. In the case of the RNA editing enzyme ADARB1, which contains an Alu exon peptide in its catalytic domain, RNA sequencing analyses of A-to-I editing demonstrate that both the Alu exon skipping and inclusion isoforms encode active enzymes. The Alu exon derived peptide may fine tune the overall editing activity and, in limited cases, the site selectivity of ADARB1 protein products.
Our data indicate that Alu elements have contributed to the acquisition of novel protein sequences during primate and human evolution.
Alu元件是灵长类和人类基因组中谱系特异性新外显子的主要贡献者。最近的研究表明,一些Alu外显子具有高转录本包含水平或组织特异性剪接模式,并且可能在调节mRNA降解或翻译效率方面发挥重要的调节作用。然而,Alu外显子对人类蛋白质组的贡献仍不清楚且存在争议。普遍的观点是,源自年轻重复元件(如Alu元件)的外显子仅限于调节功能,并且没有足够的进化时间被纳入稳定的功能性蛋白质中。
我们采用蛋白质转录组学方法系统地评估Alu外显子对人类蛋白质组的贡献。利用来自人类组织和细胞系的RNA测序、核糖体分析和蛋白质组学数据,我们提供了Alu外显子翻译活性以及人类蛋白质中存在Alu外显子衍生肽的证据。这些Alu外显子肽代表了灵长类动物与其他哺乳动物之间,以及在某些情况下人类与密切相关的灵长类动物之间物种特异性的蛋白质差异。就RNA编辑酶ADARB1而言,其催化结构域中含有一个Alu外显子肽,对A-to-I编辑的RNA测序分析表明,Alu外显子跳跃和包含异构体均编码活性酶。Alu外显子衍生肽可能会微调整体编辑活性,并在有限的情况下微调ADARB1蛋白产物的位点选择性。
我们的数据表明,Alu元件在灵长类和人类进化过程中对新蛋白质序列的获得有贡献。