Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany.
Nature. 2017 Apr 6;544(7648):115-119. doi: 10.1038/nature21715. Epub 2017 Mar 29.
Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.
转座元件被视为“自私的遗传元件”,但它们以多种方式促进基因调控和基因组进化。超过一半的人类基因组由转座元件组成。Alu 元件属于短散在核元件 (SINE) 家族的重复元件,其插入超过 100 万次,占人类基因组的 10%以上。尽管它们数量众多,并且赋予了潜在的进化优势,但 Alu 元件可能对宿主具有诱变作用,因为它们可以作为剪接受体,抑制 mRNA 的翻译,并导致基因组不稳定。Alu 元件是 RNA 编辑酶 ADAR 的主要靶标,核核糖核蛋白 HNRNPC 抑制 Alu 外显子的形成,但由反向重复 Alu 元件形成的大量二级结构对核 RNA 加工的广泛影响仍不清楚。在这里,我们表明,DHX9,一种丰富的核 RNA 解旋酶,特异性结合作为基因一部分转录的反向重复 Alu 元件。DHX9 的缺失导致产生环状 RNA 的基因数量增加,环状 RNA 含量增加,含有反向重复 Alu 元件的报告基因的翻译抑制,以及易感基因座的转录重排(在exon 之间创建主要是无意义的新连接)。DHX9 的生化纯化鉴定干扰素诱导的 ADAR(p150)异构体,而不是组成型表达的 ADAR 异构体(p110),作为 RNA 非依赖性相互作用伙伴。ADAR 和 DHX9 的共缺失增强了双链 RNA 积累缺陷,导致环状 RNA 产量增加,揭示了这两种酶之间的功能联系。我们的工作揭示了 DHX9 的一种进化上保守的功能。我们提出,它作为一种核 RNA 解旋酶发挥作用,可中和转座元件插入所带来的直接威胁,并使这些元件进化为转录后基因表达调控的工具。