Suppr超能文献

一种用于预测接受定期体检的无症状人群发生糜烂性食管炎未来风险的模型。

A Model for Predicting the Future Risk of Incident Erosive Esophagitis in an Asymptomatic Population Undergoing Regular Check-ups.

作者信息

Kang Soo Hoon, Lim Yaeji, Lee Hyuk, Kim Joungyoun, Chi Sangah, Min Yang Won, Min Byung-Hoon, Lee Jun Haeng, Son Hee Jung, Ryu Seungho, Rhee Poong-Lyul, Kim Jae J

机构信息

From the Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (SHK, HL, YWM, B-HM, JHL, HJS, P-LR, JJK); Department of Statistics, Pukyong National University, Pusan, Republic of Korea (YL); Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (JK, SC); Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (HJS); and Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea (SR).

出版信息

Medicine (Baltimore). 2016 Jan;95(4):e2591. doi: 10.1097/MD.0000000000002591.

Abstract

Erosive esophagitis is a major risk factor for Barrett esophagus and esophageal adenocarcinoma. Information regarding the putative risk factors for developing erosive esophagitis is considerably heterogeneous; thus, a risk model is required to clinically predict the incidence of erosive esophagitis. This study was to derive and validate a predictive model for the incidence of developing erosive esophagitis after negative index endoscopy in a population subjected to routine health check-ups. This retrospective cohort study of health check-ups included 11,535 patients who underwent repeated screening endoscopy after >3 years from a negative index endoscopy. We used logistic regression analysis to predict the incidence of erosive esophagitis, and a Simple Prediction of Erosive Esophagitis Development score for risk assessment was developed and internally validated using the split-sample approach. The development and validation cohorts included 5765 patients (675 with erosive esophagitis [11.7%]) and 5770 patients (670 with erosive esophagitis [11.6%]), respectively. The final model included sex, smoking behavior, body mass index, hypertension, and the triglyceride level as variables. This model predicted 667 cases of erosive esophagitis, yielding an expected-to-observed ratio of 1.00 (95% confidence interval [CI], 0.92-1.07). A simplified 5-item risk scoring system based on coefficients was developed, with a risk of erosive esophagitis of 6.2% (95% CI, 5.2-7.1) for the low-risk group (score ≤2), 15.1% (95% CI, 13.5-16.6) for the intermediate-risk group (score ≤3, 4), and 18.2% (95% CI, 15.2-21.3) for the high-risk group (score ≥5). The discriminative performance of the risk-prediction score was consistent in the derivation cohort and validation cohort (c-statistics 0.68 and 0.64, respectively); the calibration was good (Brier score 0.099 and 0.1, respectively). In conclusion, a simple risk-scoring model using putative risk factors can predict the future incidence of developing erosive esophagitis in asymptomatic populations.

摘要

糜烂性食管炎是巴雷特食管和食管腺癌的主要危险因素。关于发生糜烂性食管炎的假定危险因素的信息差异很大;因此,需要一个风险模型来临床预测糜烂性食管炎的发病率。本研究旨在推导并验证一个预测模型,用于预测在接受常规健康检查的人群中,初次内镜检查结果为阴性后发生糜烂性食管炎的发病率。这项针对健康检查的回顾性队列研究纳入了11535例患者,这些患者在初次内镜检查结果为阴性3年多后接受了重复筛查内镜检查。我们使用逻辑回归分析来预测糜烂性食管炎的发病率,并开发了一个糜烂性食管炎发生的简单预测评分用于风险评估,并使用拆分样本方法进行了内部验证。开发队列和验证队列分别包括5765例患者(675例患有糜烂性食管炎[11.7%])和5770例患者(670例患有糜烂性食管炎[11.6%])。最终模型纳入性别、吸烟行为、体重指数、高血压和甘油三酯水平作为变量。该模型预测了667例糜烂性食管炎病例,预期与观察到的比例为1.00(95%置信区间[CI],0.92 - 1.07)。基于系数开发了一个简化的5项风险评分系统,低风险组(评分≤2)糜烂性食管炎的风险为6.2%(95%CI,5.2 - 7.1),中风险组(评分≤3、4)为15.1%(95%CI,13.5 - 16.6),高风险组(评分≥5)为18.2%(95%CI,15.2 - 21.3)。风险预测评分的鉴别性能在开发队列和验证队列中是一致的(c统计量分别为0.68和0.64);校准良好(Brier评分分别为0.099和0.1)。总之,一个使用假定危险因素的简单风险评分模型可以预测无症状人群未来发生糜烂性食管炎的发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4692/5291576/564da7554c4e/medi-95-e2591-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验