Suppr超能文献

酿酒酵母的代谢工程改造以从木糖生产十六烷醇。

Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.

作者信息

Guo Weihua, Sheng Jiayuan, Zhao Huimin, Feng Xueyang

机构信息

Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Microb Cell Fact. 2016 Feb 1;15:24. doi: 10.1186/s12934-016-0423-9.

Abstract

BACKGROUND

An advantageous but challenging approach to overcome the limited supply of petroleum and relieve the greenhouse effect is to produce bulk chemicals from renewable materials. Fatty alcohols, with a billion-dollar global market, are important raw chemicals for detergents, emulsifiers, lubricants, and cosmetics production. Microbial production of fatty alcohols has been successfully achieved in several industrial microorganisms. However, most of the achievements were using glucose, an edible sugar, as the carbon source. To produce fatty alcohols in a renewable manner, non-edible sugars such as xylose will be a more appropriate feedstock.

RESULTS

In this study, we aim to engineer a Saccharomyces cerevisiae strain that can efficiently convert xylose to fatty alcohols. To this end, we first introduced the fungal xylose utilization pathway consisting of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulose kinase (XKS) into a fatty alcohol-producing S. cerevisiae strain (XF3) that was developed in our previous studies to achieve 1-hexadecanol production from xylose at 0.4 g/L. We next applied promoter engineering on the xylose utilization pathway to optimize the expression levels of XR, XDH, and XKS, and increased the 1-hexadecanol titer by 171 %. To further improve the xylose-based fatty alcohol production, two optimized S. cerevisiae strains from promoter engineering were evolved with the xylose as the sole carbon source. We found that the cell growth rate was improved at the expense of decreased fatty alcohol production, which indicated 1-hexadecanol was mainly produced as a non-growth associated product. Finally, through fed-batch fermentation, we successfully achieved 1-hexadecanol production at over 1.2 g/L using xylose as the sole carbon source, which represents the highest titer of xylose-based 1-hexadecanol reported in microbes to date.

CONCLUSIONS

A fatty alcohol-producing S. cerevisiae strain was engineered in this study to produce 1-hexadecanol from xylose. Although the xylose pathway we developed in this study could be further improved, this proof-of-concept study, for the first time to our best knowledge, demonstrated that the xylose-based fatty alcohol could be produced in S. cerevisiae with potential applications in developing consolidated bioprocessing for producing other fatty acid-derived chemicals.

摘要

背景

克服石油供应有限并缓解温室效应的一种有利但具有挑战性的方法是用可再生材料生产大宗化学品。脂肪醇在全球市场价值数十亿美元,是洗涤剂、乳化剂、润滑剂和化妆品生产的重要基础化学品。在几种工业微生物中已成功实现脂肪醇的微生物生产。然而,大多数成果都是使用葡萄糖(一种可食用糖)作为碳源。为了以可再生方式生产脂肪醇,木糖等非食用糖将是更合适的原料。

结果

在本研究中,我们旨在构建一种能将木糖高效转化为脂肪醇的酿酒酵母菌株。为此,我们首先将由木糖还原酶(XR)、木糖醇脱氢酶(XDH)和木酮糖激酶(XKS)组成的真菌木糖利用途径引入到我们之前研究中构建的产脂肪醇酿酒酵母菌株(XF3)中,以实现从木糖生产1 - 十六醇,产量为0.4 g/L。接下来,我们对木糖利用途径进行启动子工程,以优化XR、XDH和XKS的表达水平,并使1 - 十六醇产量提高了171%。为了进一步提高基于木糖的脂肪醇产量,以木糖为唯一碳源对来自启动子工程的两种优化酿酒酵母菌株进行进化。我们发现细胞生长速率提高了,但脂肪醇产量下降,这表明1 - 十六醇主要作为非生长相关产物产生。最后,通过补料分批发酵,我们成功地以木糖为唯一碳源实现了1 - 十六醇产量超过1.2 g/L,这是迄今为止微生物中基于木糖的1 - 十六醇报道的最高产量。

结论

本研究构建了一种产脂肪醇的酿酒酵母菌株,用于从木糖生产1 - 十六醇。尽管我们在本研究中开发的木糖途径可以进一步改进,但据我们所知,这项概念验证研究首次证明了基于木糖的脂肪醇可以在酿酒酵母中生产,在开发用于生产其他脂肪酸衍生化学品的整合生物加工方面具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d806/4736120/45eec26d5771/12934_2016_423_Fig1_HTML.jpg

相似文献

1
Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
Microb Cell Fact. 2016 Feb 1;15:24. doi: 10.1186/s12934-016-0423-9.
4
Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production.
Metab Eng. 2015 Jan;27:10-19. doi: 10.1016/j.ymben.2014.10.001. Epub 2014 Oct 28.
8
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
FEMS Yeast Res. 2012 Aug;12(5):582-97. doi: 10.1111/j.1567-1364.2012.00808.x. Epub 2012 Apr 30.
9
Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2019 Feb;103(3):1243-1254. doi: 10.1007/s00253-018-9493-4. Epub 2018 Nov 17.

引用本文的文献

3
Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2220816120. doi: 10.1073/pnas.2220816120. Epub 2023 Mar 13.
4
Glucose/Xylose Co-Fermenting Increases the Production of Acetyl-CoA Derived n-Butanol From Lignocellulosic Biomass.
Front Bioeng Biotechnol. 2022 Feb 16;10:826787. doi: 10.3389/fbioe.2022.826787. eCollection 2022.
6
Microbial engineering to produce fatty alcohols and alkanes.
J Ind Microbiol Biotechnol. 2021 Apr 30;48(1-2). doi: 10.1093/jimb/kuab011.
7
Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by .
Front Bioeng Biotechnol. 2021 Jan 8;8:593419. doi: 10.3389/fbioe.2020.593419. eCollection 2020.
8
Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations.
Front Bioeng Biotechnol. 2020 Dec 3;8:610936. doi: 10.3389/fbioe.2020.610936. eCollection 2020.
9
High production of triterpenoids in through manipulation of lipid components.
Biotechnol Biofuels. 2020 Jul 29;13:133. doi: 10.1186/s13068-020-01773-1. eCollection 2020.
10

本文引用的文献

1
Fatty alcohols production by oleaginous yeast.
J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72. doi: 10.1007/s10295-015-1674-x. Epub 2015 Aug 29.
2
Biosynthesis of odd-chain fatty alcohols in Escherichia coli.
Metab Eng. 2015 May;29:113-123. doi: 10.1016/j.ymben.2015.03.005. Epub 2015 Mar 12.
3
Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production.
Metab Eng. 2015 Jan;27:10-19. doi: 10.1016/j.ymben.2014.10.001. Epub 2014 Oct 28.
4
Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae.
Biotechnol Bioeng. 2015 Feb;112(2):386-92. doi: 10.1002/bit.25356. Epub 2014 Sep 10.
5
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae.
Metab Eng. 2014 Sep;25:20-9. doi: 10.1016/j.ymben.2014.06.002. Epub 2014 Jun 13.
6
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
Metab Eng. 2014 Jul;24:139-49. doi: 10.1016/j.ymben.2014.05.010. Epub 2014 May 20.
9
Production of medium chain length fatty alcohols from glucose in Escherichia coli.
Metab Eng. 2013 Nov;20:177-86. doi: 10.1016/j.ymben.2013.10.006. Epub 2013 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验