Suppr超能文献

对酿酒酵母进行理性和进化工程改造,以从木质纤维素生物质中生产二羧酸,并探索酵母对生物质水解产物耐受性的遗传机制。

Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate.

作者信息

Stovicek Vratislav, Dato Laura, Almqvist Henrik, Schöpping Marie, Chekina Ksenia, Pedersen Lasse Ebdrup, Koza Anna, Figueira Diogo, Tjosås Freddy, Ferreira Bruno Sommer, Forster Jochen, Lidén Gunnar, Borodina Irina

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.

River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark.

出版信息

Biotechnol Biofuels Bioprod. 2022 Feb 27;15(1):22. doi: 10.1186/s13068-022-02121-1.

Abstract

BACKGROUND

Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids.

RESULTS

The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µ) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µ between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL.

CONCLUSIONS

The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.

摘要

背景

木质素磺酸盐是重要的木材化学品,市场规模达7亿美元,通过木材的亚硫酸盐制浆生产。在制浆过程中会产生亚硫酸盐废液(SSL),除了木质素磺酸盐外,还含有半纤维素衍生的糖——对于阔叶木而言,主要是戊糖木糖。目前这些戊糖未得到充分利用。如果能将它们转化为高附加值化学品,该工艺的整体经济盈利能力将会提高。SSL通常对微生物具有很强的抑制作用,这给生物技术工艺带来了挑战。本研究的目的是开发一种能将SSL中的木糖转化为羧酸的健壮酵母菌株。

结果

利用CRISPR/Cas基因组编辑和适应性实验室进化技术,对酿酒酵母的工业菌株乙醇红进行改造,使其能在低pH值下有效利用蓝桉木质素磺酸盐流中的木糖。改造后的菌株能在以木糖为唯一碳源的合成培养基中生长,最大比生长速率(µ)为0.28 1/h。筛选出的进化菌株能在pH 3.5的SSL中利用所有碳源,根据氮源补充情况,生长速率µ在0.05至0.1 1/h之间。通过对进化菌株进行全基因组测序,揭示了对SSL耐受性增强的潜在遗传决定因素。特别是,基于不同菌株尤其是性能最佳菌株中突变的类型和分布,确定了四个顶级候选基因(SNG1、FIT3、FZF1和CBP3)以及其他具有预测重要作用的候选基因。通过过表达三羧酸循环(TCA)还原分支,对开发的菌株进一步改造以生产二羧酸(琥珀酸和苹果酸)。生产菌株每摩尔SSL中存在的木糖分别产生0.2摩尔苹果酸和0.12摩尔琥珀酸。

结论

代谢工程与适应性进化相结合的方法提供了一种健壮的耐SSL工业菌株,该菌株能在低pH值下将SSL原料中的可发酵碳含量转化为苹果酸和琥珀酸,产量达到每摩尔总消耗碳源0.1摩尔和0.065摩尔。此外,我们的工作揭示了对SSL流耐受性的潜在遗传背景,指出了提高对抑制性工业原料耐受性的潜在基因靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b5d/8882276/bf3822aa5746/13068_2022_2121_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验