Suppr超能文献

系统发育上不同的细菌复合体I同工酶的不同功能。

Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes.

作者信息

Spero Melanie A, Brickner Joshua R, Mollet Jordan T, Pisithkul Tippapha, Amador-Noguez Daniel, Donohue Timothy J

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

J Bacteriol. 2016 Mar 31;198(8):1268-80. doi: 10.1128/JB.01025-15. Print 2016 Apr.

Abstract

UNLABELLED

NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethyl sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroidescomplex I enzymes (complex IA and complex IE) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex IA) or NADH oxidation (complex IE). The canonical alphaproteobacterial complex I isozyme (complex IA) was also shown to be important for routing electrons to nitrogenase-mediated H2 production, while the horizontally acquired enzyme (complex IE) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains.

IMPORTANCE

Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more-diverse and more-flexible electron transport chains than mitochondria. We tested complex I function in Rhodobacter sphaeroides, a bacterium predicted to encode two phylogenetically distinct complex I isozymes. R. sphaeroides cells lacking both isozymes had growth defects during all tested modes of growth, illustrating the important function of this enzyme under diverse conditions. We conclude that the two isozymes are not functionally redundant and predict that phylogenetically distinct complex I enzymes have evolved to support the diverse lifestyles of bacteria.

摘要

未标记

NADH:醌氧化还原酶(复合体I)是一种生物能酶,它将电子从NADH转移至醌,通过对质子动力势的贡献来保存该反应的能量。虽然NADH氧化对线粒体有氧呼吸的重要性已有充分记录,但复合体I对细菌电子传递链的贡献仅在少数物种中得到验证。在此,我们分析了球形红细菌中两种系统发育上不同的复合体I同工酶的功能,球形红细菌是一种含有特征明确的电子传递链的α-变形菌。我们发现,球形红细菌复合体I活性对有氧呼吸很重要,并且是厌氧二甲基亚砜(DMSO)呼吸(在无光条件下)、光合自养生长和光合异养生长(在无外部电子受体的情况下)所必需的。我们的数据还深入了解了系统发育上不同的球形红细菌复合体I酶(复合体IA和复合体IE)在光合异养生长过程中维持细胞氧化还原状态的功能。我们提出,在光合异养生长过程中,每种同工酶的功能要么是NADH合成(复合体IA),要么是NADH氧化(复合体IE)。典型的α-变形菌复合体I同工酶(复合体IA)也被证明对将电子导向固氮酶介导的氢气产生很重要,而水平获得的酶(复合体IE)在此过程中是可有可无的。与复合体I在线粒体中的单一作用不同,我们预测在细菌物种中发现的系统发育上不同的复合体I酶已经进化以增强其各自电子传递链的功能。

重要性

细胞利用质子动力势(PMF)、NADH和ATP来支持众多过程。在线粒体中,复合体I利用NADH氧化来产生PMF,后者可驱动ATP合成。本研究分析了复合体I在细菌中的功能,细菌含有比线粒体更多样化和更灵活的电子传递链。我们在球形红细菌中测试了复合体I的功能,该细菌预计编码两种系统发育上不同的复合体I同工酶。缺乏这两种同工酶的球形红细菌细胞在所有测试的生长模式下都存在生长缺陷,这说明了该酶在不同条件下的重要功能。我们得出结论,这两种同工酶在功能上并非冗余,并预测系统发育上不同的复合体I酶已经进化以支持细菌的多样生活方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验