Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA.
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.
mBio. 2020 Feb 4;11(1):e03238-19. doi: 10.1128/mBio.03238-19.
In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H or Na). We know little about the respiratory pathways in species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut species, , has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na-pumping ADH:uinone oxidoeductase (NQR) and ADH eydrogenase (NDH2), have NADH dehydrogenase activity, whereas H-pumping ADH:biquinone xidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δ Δ mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered growth, the single deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in and the overall importance of respiration to this abundant gut symbiont. species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in , we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.
在细菌中,驱动分子转运和 ATP 合成的呼吸途径包括多种利用不同电子供体和受体的酶复合物。这种特性使它们能够改变能量守恒的效率,并产生不同类型的电化学梯度(H 或 Na)。我们对在人类肠道中大量存在的 物种的呼吸途径知之甚少,也不知道它们是否有简单的途径或分支途径。在这里,我们结合遗传学、酶活性测量和哺乳动物肠道定植测定,以更好地理解呼吸的第一步,即从 NADH 向醌传递电子。我们发现,一种模型肠道 物种 ,具有通常将电子从高度还原的 NADH 转移到醌的三种类型的假定 NADH 脱氢酶。对野生型和缺失突变体的 NADH 氧化和醌还原分析表明,这两种酶中的两种,Na 泵 ADH:醌氧化还原酶(NQR)和 ADH 氢酶 (NDH2),具有 NADH 脱氢酶活性,而 H 泵 ADH:双醌氧化还原酶(NUO)则没有。在厌氧条件下,NQR 贡献了超过 65%的 NADH:醌氧化还原酶活性。在富含培养基中生长时,没有一个缺失突变体的生长缺陷明显;然而,几乎没有 NADH:醌氧化还原酶活性的双 Δ Δ 突变体的倍增时间显著增加。尽管 生长没有改变,单一的 缺失突变体无法在无菌小鼠肠道中竞争定植,这证实了 NQR 在 呼吸中的重要性,以及呼吸对这种丰富的肠道共生体的整体重要性。 物种在人类肠道中大量存在,并为其宿主提供许多有益特性。 物种将宿主和膳食糖和多糖转化为能量的能力对它们在人类肠道中的成功至关重要。我们对这些细菌从人类肠道中提取的分子了解很多,但对它们如何将这些分子转化为能量知之甚少。在这里,我们表明 具有复杂的呼吸途径,其中两种不同的酶将电子从 NADH 转移到醌,第三种酶复合物可能使用 NADH 以外的电子供体。尽管发酵通常被认为是 产生能量的主要机制,但我们发现,缺乏一种 NADH:醌氧化还原酶的突变体无法在哺乳动物肠道中与野生型竞争,这揭示了呼吸对这些丰富的肠道共生体的重要性。