Suppr超能文献

通过超惩罚期望最大化算法实现数据自适应收缩

Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm.

作者信息

Boonstra Philip S, Taylor Jeremy M G, Mukherjee Bhramar

机构信息

Department of Biostatistics, University of Michigan, 1415 Washington Hts., Ann Arbor, MI, USA. Tel. +1 (734) 615-1580.

出版信息

Stat Biosci. 2015 Oct 1;7(2):417-431. doi: 10.1007/s12561-015-9132-x. Epub 2015 Jun 3.

Abstract

We propose an extension of the expectation-maximization (EM) algorithm, called the hyperpenalized EM (HEM) algorithm, that maximizes a penalized log-likelihood, for which some data are missing or unavailable, using a data-adaptive estimate of the penalty parameter. This is potentially useful in applications for which the analyst is unable or unwilling to choose a single value of a penalty parameter but instead can posit a plausible range of values. The HEM algorithm is conceptually straightforward and also very effective, and we demonstrate its utility in the analysis of a genomic data set. Gene expression measurements and clinical covariates were used to predict survival time. However, many survival times are censored, and some observations only contain expression measurements derived from a different assay, which together constitute a difficult missing data problem. It is desired to shrink the genomic contribution in a data-adaptive way. The HEM algorithm successfully handles both the missing data and shrinkage aspects of the problem.

摘要

我们提出了期望最大化(EM)算法的一种扩展,称为超惩罚EM(HEM)算法,它使用惩罚参数的数据自适应估计来最大化惩罚对数似然,其中一些数据缺失或不可用。这在分析师无法或不愿意选择惩罚参数的单个值,而是可以设定一个合理的值范围的应用中可能很有用。HEM算法在概念上很简单,而且非常有效,我们在一个基因组数据集的分析中证明了它的实用性。基因表达测量值和临床协变量被用于预测生存时间。然而,许多生存时间是被截尾的,并且一些观测值仅包含来自不同检测方法的表达测量值,这共同构成了一个棘手的缺失数据问题。期望以数据自适应的方式缩小基因组的贡献。HEM算法成功地处理了该问题中缺失数据和收缩这两个方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226a/4728141/1b2c881c949e/nihms697039f1.jpg

相似文献

1
Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm.通过超惩罚期望最大化算法实现数据自适应收缩
Stat Biosci. 2015 Oct 1;7(2):417-431. doi: 10.1007/s12561-015-9132-x. Epub 2015 Jun 3.

本文引用的文献

6
Bayesian LASSO for quantitative trait loci mapping.用于数量性状基因座定位的贝叶斯套索法
Genetics. 2008 Jun;179(2):1045-55. doi: 10.1534/genetics.107.085589. Epub 2008 May 27.
7
Empirical Bayes Gibbs sampling.经验贝叶斯吉布斯抽样
Biostatistics. 2001 Dec;2(4):485-500. doi: 10.1093/biostatistics/2.4.485.
8
Assessment and comparison of prognostic classification schemes for survival data.生存数据预后分类方案的评估与比较
Stat Med. 1999;18(17-18):2529-45. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验