Casella G
Department of Statistics, University of Florida, Gainesville, FL 32611, USA.
Biostatistics. 2001 Dec;2(4):485-500. doi: 10.1093/biostatistics/2.4.485.
The wide applicability of Gibbs sampling has increased the use of more complex and multi-level hierarchical models. To use these models entails dealing with hyperparameters in the deeper levels of a hierarchy. There are three typical methods for dealing with these hyperparameters: specify them, estimate them, or use a 'flat' prior. Each of these strategies has its own associated problems. In this paper, using an empirical Bayes approach, we show how the hyperparameters can be estimated in a way that is both computationally feasible and statistically valid.
吉布斯采样的广泛适用性增加了更复杂的多层次分层模型的使用。要使用这些模型,就需要处理层次结构更深层的超参数。处理这些超参数有三种典型方法:指定它们、估计它们或使用“无信息”先验。这些策略中的每一种都有其相关问题。在本文中,我们使用经验贝叶斯方法,展示了如何以一种计算上可行且统计上有效的方式估计超参数。