Suppr超能文献

室间隔缺损的自动分类框架:高通量小鼠胚胎心脏表型分析的初步研究

Automatic classification framework for ventricular septal defects: a pilot study on high-throughput mouse embryo cardiac phenotyping.

作者信息

Xie Zhongliu, Liang Xi, Guo Liucheng, Kitamoto Asanobu, Tamura Masaru, Shiroishi Toshihiko, Gillies Duncan

机构信息

Imperial College London, Department of Computing, South Kensington Campus, London SW7 2AZ, United Kingdom; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan; University of Melbourne, Department of Computer Science and Software Engineering, Parkville Campus, Melbourne VIC 3010, Australia.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):041003. doi: 10.1117/1.JMI.2.4.041003. Epub 2015 Sep 11.

Abstract

Intensive international efforts are underway toward phenotyping the entire mouse genome by modifying all its [Formula: see text] genes one-by-one for comparative studies. A workload of this scale has triggered numerous studies harnessing image informatics for the identification of morphological defects. However, existing work in this line primarily rests on abnormality detection via structural volumetrics between wild-type and gene-modified mice, which generally fails when the pathology involves no severe volume changes, such as ventricular septal defects (VSDs) in the heart. Furthermore, in embryo cardiac phenotyping, the lack of relevant work in embryonic heart segmentation, the limited availability of public atlases, and the general requirement of manual labor for the actual phenotype classification after abnormality detection, along with other limitations, have collectively restricted existing practices from meeting the high-throughput demands. This study proposes, to the best of our knowledge, the first fully automatic VSD classification framework in mouse embryo imaging. Our approach leverages a combination of atlas-based segmentation and snake evolution techniques to derive the segmentation of heart ventricles, where VSD classification is achieved by checking whether the left and right ventricles border or overlap with each other. A pilot study has validated our approach at a proof-of-concept level and achieved a classification accuracy of 100% through a series of empirical experiments on a database of 15 images.

摘要

国际上正在进行密集的努力,通过逐一修改小鼠的所有[公式:见文本]基因来对整个小鼠基因组进行表型分析,以进行比较研究。如此规模的工作量引发了众多利用图像信息学来识别形态缺陷的研究。然而,这方面现有的工作主要基于通过野生型和基因修饰小鼠之间的结构体积测量来检测异常,当病理情况不涉及严重的体积变化时,比如心脏室间隔缺损(VSDs),这种方法通常就会失效。此外,在胚胎心脏表型分析中,胚胎心脏分割方面缺乏相关工作、公共图谱的可用性有限,以及在检测到异常后实际表型分类通常需要人工操作等其他限制因素,共同制约了现有做法满足高通量需求。据我们所知,本研究提出了小鼠胚胎成像中首个全自动VSD分类框架。我们的方法利用基于图谱的分割和蛇形演化技术相结合来得出心室的分割结果,其中通过检查左心室和右心室是否相邻或相互重叠来实现VSD分类。一项初步研究在概念验证层面验证了我们的方法,并通过在一个包含15张图像的数据库上进行的一系列实证实验,实现了100%的分类准确率。

相似文献

1
Automatic classification framework for ventricular septal defects: a pilot study on high-throughput mouse embryo cardiac phenotyping.
J Med Imaging (Bellingham). 2015 Oct;2(4):041003. doi: 10.1117/1.JMI.2.4.041003. Epub 2015 Sep 11.
3
Evaluation of ventricular septal defects in horses using two-dimensional and Doppler echocardiography.
Equine Vet J Suppl. 1995 Sep(19):86-95. doi: 10.1111/j.2042-3306.1995.tb04994.x.
5
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
6
Staged ventricular recruitment in patients with borderline ventricles and large ventricular septal defects.
J Thorac Cardiovasc Surg. 2018 Jul;156(1):254-264. doi: 10.1016/j.jtcvs.2018.03.111. Epub 2018 Apr 4.
7
Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
Int J Comput Assist Radiol Surg. 2016 May;11(5):817-26. doi: 10.1007/s11548-015-1332-9. Epub 2015 Dec 8.
8
Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans.
Med Image Anal. 2017 Jul;39:44-55. doi: 10.1016/j.media.2017.04.004. Epub 2017 Apr 13.
9
Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.
Comput Methods Programs Biomed. 2014 May;114(3):219-30. doi: 10.1016/j.cmpb.2014.02.004. Epub 2014 Feb 28.
10
Anatomy of the ventricular septal defect in congenital heart defects: a random association?
Orphanet J Rare Dis. 2018 Jul 18;13(1):118. doi: 10.1186/s13023-018-0861-z.

引用本文的文献

1
CACCT: An Automated Tool of Detecting Complicated Cardiac Malformations in Mouse Models.
Adv Sci (Weinh). 2020 Feb 20;7(8):1903592. doi: 10.1002/advs.201903592. eCollection 2020 Apr.
2
An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment.
Cardiol Res Pract. 2018 Aug 8;2018:1437125. doi: 10.1155/2018/1437125. eCollection 2018.

本文引用的文献

1
Phenotype detection in morphological mutant mice using deformation features.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):437-44. doi: 10.1007/978-3-642-40760-4_55.
2
Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.
Dis Model Mech. 2013 May;6(3):571-9. doi: 10.1242/dmm.011833. Epub 2013 Mar 18.
3
Overdosage of Hand2 causes limb and heart defects in the human chromosomal disorder partial trisomy distal 4q.
Hum Mol Genet. 2013 Jun 15;22(12):2471-81. doi: 10.1093/hmg/ddt099. Epub 2013 Feb 27.
4
Automated segmentation of mouse brain images using multi-atlas multi-ROI deformation and label fusion.
Neuroinformatics. 2013 Jan;11(1):35-45. doi: 10.1007/s12021-012-9163-0.
5
A novel 3D mouse embryo atlas based on micro-CT.
Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.
8
Mouse embryonic phenotyping by morphometric analysis of MR images.
Physiol Genomics. 2010 Oct;42A(2):89-95. doi: 10.1152/physiolgenomics.00091.2010. Epub 2010 Aug 3.
9
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
Neuroimage. 2011 Jan 15;54(2):769-78. doi: 10.1016/j.neuroimage.2010.07.039. Epub 2010 Jul 23.
10
Evaluation of Atlas based Mouse Brain Segmentation.
Proc SPIE Int Soc Opt Eng. 2009 Feb 1;7259:725943-725949. doi: 10.1117/12.812762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验