Suppr超能文献

从心脏电影磁共振扫描的长轴图像全自动左心室分割。

Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans.

机构信息

Division of Image Processing, Department of Radiology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.

Division of Image Processing, Department of Radiology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.

出版信息

Med Image Anal. 2017 Jul;39:44-55. doi: 10.1016/j.media.2017.04.004. Epub 2017 Apr 13.

Abstract

With an increasing number of large-scale population-based cardiac magnetic resonance (CMR) imaging studies being conducted nowadays, there comes the mammoth task of image annotation and image analysis. Such population-based studies would greatly benefit from automated pipelines, with an efficient CMR image analysis workflow. The purpose of this work is to investigate the feasibility of using a fully-automatic pipeline to segment the left ventricular endocardium and epicardium simultaneously on two orthogonal (vertical and horizontal) long-axis cardiac cine MRI scans. The pipeline is based on a multi-atlas-based segmentation approach and a spatio-temporal registration approach. The performance of the method was assessed by: (i) comparing the automatic segmentations to those obtained manually at both the end-diastolic and end-systolic phase, (ii) comparing the automatically obtained clinical parameters, including end-diastolic volume, end-systolic volume, stroke volume and ejection fraction, with those defined manually and (iii) by the accuracy of classifying subjects to the appropriate risk category based on the estimated ejection fraction. Automatic segmentation of the left ventricular endocardium was achieved with a Dice similarity coefficient (DSC) of 0.93 on the end-diastolic phase for both the vertical and horizontal long-axis scan; on the end-systolic phase the DSC was 0.88 and 0.85, respectively. For the epicardium, a DSC of 0.94 and 0.95 was obtained on the end-diastolic vertical and horizontal long-axis scans; on the end-systolic phase the DSC was 0.90 and 0.88, respectively. With respect to the clinical volumetric parameters, Pearson correlation coefficient (R) of 0.97 was obtained for the end-diastolic volume, 0.95 for end-systolic volume, 0.87 for stroke volume and 0.84 for ejection fraction. Risk category classification based on ejection fraction showed that 80% of the subjects were assigned to the correct risk category and only one subject (< 1%) was more than one risk category off. We conclude that the proposed automatic pipeline presents a viable and cost-effective alternative for manual annotation.

摘要

随着现今越来越多的大规模基于人群的心脏磁共振(CMR)成像研究的开展,图像注释和图像分析的艰巨任务随之而来。此类基于人群的研究将极大地受益于自动化流水线,实现高效的 CMR 图像分析工作流程。本研究旨在探讨使用全自动流水线同时对两个正交(垂直和水平)长轴心脏电影 MRI 扫描进行左心室心内膜和心外膜分割的可行性。该流水线基于多图谱分割方法和时空配准方法。该方法的性能通过以下方式进行评估:(i)比较自动分割与舒张末期和收缩末期手动分割的结果,(ii)比较自动获得的临床参数,包括舒张末期容积、收缩末期容积、心搏量和射血分数,与手动定义的参数进行比较,以及(iii)基于估计的射血分数,通过分类受试者到适当风险类别的准确性进行评估。在垂直和水平长轴扫描的舒张末期,左心室心内膜的自动分割获得了 0.93 的 Dice 相似系数(DSC);在收缩末期,DSC 分别为 0.88 和 0.85。在心外膜方面,在垂直和水平长轴的舒张末期获得了 0.94 和 0.95 的 DSC;在收缩末期,DSC 分别为 0.90 和 0.88。对于临床容量参数,舒张末期容积的 Pearson 相关系数(R)为 0.97,收缩末期容积为 0.95,心搏量为 0.87,射血分数为 0.84。基于射血分数的风险类别分类表明,80%的受试者被分配到正确的风险类别,只有 1%(<1%)的受试者被分配到一个以上的风险类别。我们得出结论,所提出的自动流水线为手动注释提供了一种可行且具有成本效益的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验