Suppr超能文献

基于 MRI 的形态计量分析对鼠胚胎进行表型分析。

Mouse embryonic phenotyping by morphometric analysis of MR images.

机构信息

Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Physiol Genomics. 2010 Oct;42A(2):89-95. doi: 10.1152/physiolgenomics.00091.2010. Epub 2010 Aug 3.

Abstract

A new method is described for automatic detection of subtle morphological phenotypes in mouse embryos. Based on high-resolution magnetic resonance imaging scanning and nonlinear image alignment, this method is demonstrated by comparing the morphology of two inbred strains, C57BL/6J and 129Sv/S1ImJ, at 15.5 days postconception. Mouse embryo morphology was found to be highly amenable to this kind of analysis with very low levels (on average 110 μm) of residual anatomical variation within strains after linear differences in pose and scale are removed. Mapping of local size differences showed that C57BL/6J embryos were larger than 129Sv/S1ImJ embryos, although these differences were not uniformly distributed across the anatomy. Expressed in terms of organ volumes, heart and lung were larger in C57BL/6J embryos, while brain and liver were comparable in volume between strains. The positive relationship between organ size and embryo size was consistent for the two strains but differed by organ, with the brain and liver being the least variable. Together these findings suggest the power of this technique for detecting subtle phenotypic differences arising from mutated genes.

摘要

一种新的方法被描述为自动检测小鼠胚胎的微妙形态表型。基于高分辨率磁共振成像扫描和非线性图像配准,该方法通过比较两种近交系 C57BL/6J 和 129Sv/S1ImJ 在受孕后 15.5 天的形态来证明。研究发现,这种方法非常适用于分析,在去除姿势和比例的线性差异后,种内的解剖学差异非常小(平均为 110 μm)。局部大小差异的映射表明,C57BL/6J 胚胎比 129Sv/S1ImJ 胚胎大,尽管这些差异并非均匀分布在整个解剖结构中。以器官体积表示,C57BL/6J 胚胎的心脏和肺较大,而大脑和肝脏在两种品系之间体积相当。两种品系的器官大小与胚胎大小之间呈正相关关系,但因器官而异,大脑和肝脏的变化最小。这些发现表明,该技术具有检测由基因突变引起的微妙表型差异的强大功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abfc/2957795/2d584718c546/zh70141035240001.jpg

相似文献

1
Mouse embryonic phenotyping by morphometric analysis of MR images.
Physiol Genomics. 2010 Oct;42A(2):89-95. doi: 10.1152/physiolgenomics.00091.2010. Epub 2010 Aug 3.
2
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
Neuroimage. 2011 Jan 15;54(2):769-78. doi: 10.1016/j.neuroimage.2010.07.039. Epub 2010 Jul 23.
3
A novel 3D mouse embryo atlas based on micro-CT.
Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.
4
Phenotyping the central nervous system of the embryonic mouse by magnetic resonance microscopy.
Neuroimage. 2014 Aug 15;97:95-106. doi: 10.1016/j.neuroimage.2014.04.043. Epub 2014 Apr 22.
5
6
High-resolution magnetic resonance histology of the embryonic and neonatal mouse: a 4D atlas and morphologic database.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12331-6. doi: 10.1073/pnas.0805747105. Epub 2008 Aug 19.
7
In utero time-course assessment of mouse embryo development using high resolution magnetic resonance imaging.
Anat Embryol (Berl). 2002 Dec;206(1-2):131-7. doi: 10.1007/s00429-002-0281-6. Epub 2002 Nov 13.
8
High-resolution MRI of early-stage mouse embryos.
NMR Biomed. 2013 Feb;26(2):224-31. doi: 10.1002/nbm.2843. Epub 2012 Aug 22.
9
Phenotype detection in morphological mutant mice using deformation features.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):437-44. doi: 10.1007/978-3-642-40760-4_55.
10
Comparative SNR for high-throughput mouse embryo MR microscopy.
Magn Reson Med. 2010 Jun;63(6):1703-7. doi: 10.1002/mrm.22352.

引用本文的文献

1
Anatomy-aware, label-informed approach improves image registration for challenging datasets.
bioRxiv. 2025 Aug 12:2025.08.11.669599. doi: 10.1101/2025.08.11.669599.
2
Mouse Cardiovascular Imaging.
Curr Protoc. 2024 Sep;4(9):e1116. doi: 10.1002/cpz1.1116.
4
Mouse embryo phenotyping using X-ray microCT.
Front Cell Dev Biol. 2022 Sep 16;10:949184. doi: 10.3389/fcell.2022.949184. eCollection 2022.
5
An optimized workflow for microCT imaging of formalin-fixed and paraffin-embedded (FFPE) early equine embryos.
Anat Histol Embryol. 2022 Sep;51(5):611-623. doi: 10.1111/ahe.12834. Epub 2022 Jul 18.
6
Testing the accuracy of 3D automatic landmarking via genome-wide association studies.
G3 (Bethesda). 2022 Feb 4;12(2). doi: 10.1093/g3journal/jkab443.
7
Maternal iron deficiency perturbs embryonic cardiovascular development in mice.
Nat Commun. 2021 Jun 8;12(1):3447. doi: 10.1038/s41467-021-23660-5.
8
LAMA: automated image analysis for the developmental phenotyping of mouse embryos.
Development. 2021 Mar 24;148(18):dev192955. doi: 10.1242/dev.192955.
9
The effect of automated landmark identification on morphometric analyses.
J Anat. 2019 Jun;234(6):917-935. doi: 10.1111/joa.12973. Epub 2019 Mar 22.

本文引用的文献

1
Analysis of serial magnetic resonance images of mouse brains using image registration.
Neuroimage. 2009 Feb 1;44(3):692-700. doi: 10.1016/j.neuroimage.2008.10.016. Epub 2008 Oct 29.
2
In vivo quantification of embryonic and placental growth during gestation in mice using micro-ultrasound.
Reprod Biol Endocrinol. 2008 Aug 12;6:34. doi: 10.1186/1477-7827-6-34.
3
Mouse behavioral mutants have neuroimaging abnormalities.
Hum Brain Mapp. 2007 Jun;28(6):567-75. doi: 10.1002/hbm.20408.
4
Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging.
Neuroimage. 2007 May 1;35(4):1424-33. doi: 10.1016/j.neuroimage.2007.02.023. Epub 2007 Mar 1.
5
A mouse for all reasons.
Cell. 2007 Jan 12;128(1):9-13. doi: 10.1016/j.cell.2006.12.018.
6
Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography.
Physiol Genomics. 2006 Jan 12;24(2):154-62. doi: 10.1152/physiolgenomics.00217.2005.
7
Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI.
Neuroimage. 2006 Jan 1;29(1):99-105. doi: 10.1016/j.neuroimage.2005.07.008. Epub 2005 Aug 9.
9
The Collaborative Cross, a community resource for the genetic analysis of complex traits.
Nat Genet. 2004 Nov;36(11):1133-7. doi: 10.1038/ng1104-1133.
10
Making the mouse embryo transparent: identifying developmental malformations using magnetic resonance imaging.
Birth Defects Res C Embryo Today. 2004 Sep;72(3):241-9. doi: 10.1002/bdrc.20017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验