Suppr超能文献

复制应激:重回正轨。

Replication stress: getting back on track.

作者信息

Berti Matteo, Vindigni Alessandro

出版信息

Nat Struct Mol Biol. 2016 Feb;23(2):103-9. doi: 10.1038/nsmb.3163.

Abstract

The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.

摘要

复制应激反应使DNA复制机制能够克服DNA损伤或内在的复制叉障碍,对于确保遗传信息准确传递给子细胞至关重要。近年来已鉴定出多种复制应激反应途径,这就引发了关于这些途径的特定功能以及可能存在的冗余功能的问题。在这里,我们综述了哺乳动物细胞中复制应激反应的新出现机制,并探讨它们如何影响核心DNA复制复合体的动态变化。

相似文献

1
Replication stress: getting back on track.
Nat Struct Mol Biol. 2016 Feb;23(2):103-9. doi: 10.1038/nsmb.3163.
2
Mechanisms of damage tolerance and repair during DNA replication.
Nucleic Acids Res. 2021 Apr 6;49(6):3033-3047. doi: 10.1093/nar/gkab101.
3
Preserving replication fork integrity and competence via the homologous recombination pathway.
DNA Repair (Amst). 2018 Nov;71:135-147. doi: 10.1016/j.dnarep.2018.08.017. Epub 2018 Aug 25.
4
Leveraging the replication stress response to optimize cancer therapy.
Nat Rev Cancer. 2023 Jan;23(1):6-24. doi: 10.1038/s41568-022-00518-6. Epub 2022 Nov 2.
5
Replication fork dynamics and the DNA damage response.
Biochem J. 2012 Apr 1;443(1):13-26. doi: 10.1042/BJ20112100.
6
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork.
Int J Mol Sci. 2020 Feb 22;21(4):1506. doi: 10.3390/ijms21041506.
7
Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.
J Biol Chem. 2017 Sep 15;292(37):15216-15224. doi: 10.1074/jbc.M117.787473. Epub 2017 Jul 17.
8
Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission.
Mutat Res. 2018 Mar;808:62-73. doi: 10.1016/j.mrfmmm.2017.08.002. Epub 2017 Aug 14.
9
Regulation of replication fork speed: Mechanisms and impact on genomic stability.
DNA Repair (Amst). 2019 Sep;81:102654. doi: 10.1016/j.dnarep.2019.102654. Epub 2019 Jul 8.
10
MBD1 protects replication fork stability by recruiting PARP1 and controlling transcription-replication conflicts.
Cancer Gene Ther. 2024 Jan;31(1):94-107. doi: 10.1038/s41417-023-00685-0. Epub 2023 Nov 10.

引用本文的文献

1
Gene expression profiling and pathway analysis in acute myeloid leukaemia-normal karyotype patients.
PLoS One. 2025 Sep 5;20(9):e0328911. doi: 10.1371/journal.pone.0328911. eCollection 2025.
2
Chromoanasynthesis.
Methods Mol Biol. 2025;2968:35-51. doi: 10.1007/978-1-0716-4750-9_2.
3
The Ski2 helicase ASCC3 unwinds DNA upon fork stalling to control replication stress responses.
bioRxiv. 2025 Jul 26:2025.07.24.666583. doi: 10.1101/2025.07.24.666583.
4
Histone Deacetylase Inhibitors Target DNA Replication Regulators and Replication Stress in Ewing Sarcoma Cells.
Cancer Res Commun. 2025 Jun 1;5(6):1034-1048. doi: 10.1158/2767-9764.CRC-25-0058.
5
The DNA damage tolerance factor Rad5 and telomere replication.
Curr Genet. 2025 May 26;71(1):11. doi: 10.1007/s00294-025-01315-y.
6
Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target.
Cancer Cell. 2025 Jun 9;43(6):1141-1158.e11. doi: 10.1016/j.ccell.2025.04.014. Epub 2025 May 15.
7
ATM priming and end resection-coupled phosphorylation of MRE11 is important for fork protection and replication restart.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2422720122. doi: 10.1073/pnas.2422720122. Epub 2025 Apr 18.
9
p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis.
Nucleic Acids Res. 2024 Nov 11;52(20):12351-12377. doi: 10.1093/nar/gkae811.
10
PARP10 promotes the repair of nascent strand DNA gaps through RAD18 mediated translesion synthesis.
Nat Commun. 2024 Jul 23;15(1):6197. doi: 10.1038/s41467-024-50429-3.

本文引用的文献

1
A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage.
Oncogene. 2017 Sep 7;36(36):5220. doi: 10.1038/onc.2017.238. Epub 2017 Jul 3.
2
HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal.
Mol Cell. 2015 Jun 18;58(6):1090-100. doi: 10.1016/j.molcel.2015.05.013. Epub 2015 Jun 4.
4
ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress.
Mol Cell. 2015 Apr 16;58(2):323-38. doi: 10.1016/j.molcel.2015.02.031. Epub 2015 Apr 2.
5
FBH1 Catalyzes Regression of Stalled Replication Forks.
Cell Rep. 2015 Mar 17;10(10):1749-1757. doi: 10.1016/j.celrep.2015.02.028. Epub 2015 Mar 12.
6
Regulated eukaryotic DNA replication origin firing with purified proteins.
Nature. 2015 Mar 26;519(7544):431-5. doi: 10.1038/nature14285. Epub 2015 Mar 4.
8
DNA2 drives processing and restart of reversed replication forks in human cells.
J Cell Biol. 2015 Mar 2;208(5):545-62. doi: 10.1083/jcb.201406100.
9
Replication fork reversal in eukaryotes: from dead end to dynamic response.
Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20. doi: 10.1038/nrm3935. Epub 2015 Feb 25.
10
Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex.
Mol Cell. 2015 Mar 5;57(5):812-823. doi: 10.1016/j.molcel.2014.12.038. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验