Suppr超能文献

尼龙和生物相容性聚己内酯的开源选择性激光烧结(OpenSLS)

Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.

作者信息

Kinstlinger Ian S, Bastian Andreas, Paulsen Samantha J, Hwang Daniel H, Ta Anderson H, Yalacki David R, Schmidt Tim, Miller Jordan S

机构信息

Department of Bioengineering, Rice University, Houston, Texas, United States of America.

Lansing Makers Network, Lansing, Michigan, United States of America.

出版信息

PLoS One. 2016 Feb 3;11(2):e0147399. doi: 10.1371/journal.pone.0147399. eCollection 2016.

Abstract

Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials.

摘要

选择性激光烧结(SLS)是一种增材制造工艺,它使用激光将粉末状原材料熔合为固态三维结构。尽管使用SLS利用多种原材料(包括生物材料)制造复杂、高分辨率结构具有潜力,但商业SLS系统高昂的成本阻碍了该技术在科学界的广泛应用。在此,我们开发了一种低成本、开源的SLS系统(OpenSLS),并展示了其制造具有亚毫米特征和悬垂区域的尼龙结构的能力。随后,我们展示了将聚己内酯(PCL)制造成大孔结构,如菱形晶格。对使用PCL进行骨组织工程的广泛关注表明,PCL晶格是工程化骨的相关模型支架几何形状。对具有大粉末粒度(约500μm)的材料进行SLS会导致零件表面粗糙度较高,因此我们进一步引入了一种简单的蒸汽平滑技术来降低烧结PCL结构的表面粗糙度,这进一步提高了它们的弹性模量和屈服应力。蒸汽平滑的PCL还可用于在诸如聚二甲基硅氧烷等正交材料内对可灌注流体网络进行牺牲模板化。最后,我们证明了人间充质干细胞能够在烧结和平滑的PCL表面上粘附、存活并沿成骨谱系分化,这表明OpenSLS有潜力生产可用于细胞研究的PCL支架。OpenSLS为科学界提供了一个可用于研究激光烧结和制造各种材料复杂几何形状的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/589b/4739701/5b4da944c028/pone.0147399.g001.jpg

相似文献

1
Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.
PLoS One. 2016 Feb 3;11(2):e0147399. doi: 10.1371/journal.pone.0147399. eCollection 2016.
3
Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.
Colloids Surf B Biointerfaces. 2015 Nov 1;135:81-89. doi: 10.1016/j.colsurfb.2015.06.074. Epub 2015 Jul 19.
5
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
Acta Biomater. 2010 Jun;6(6):2028-34. doi: 10.1016/j.actbio.2009.12.033. Epub 2009 Dec 22.
8
Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
Biofabrication. 2014 Mar;6(1):015004. doi: 10.1088/1758-5082/6/1/015004. Epub 2014 Jan 15.
9
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
Biomaterials. 2005 Aug;26(23):4817-27. doi: 10.1016/j.biomaterials.2004.11.057. Epub 2005 Jan 23.
10

引用本文的文献

2
A facile one step route that introduces functionality to polymer powders for laser sintering.
Nat Commun. 2024 Apr 11;15(1):3137. doi: 10.1038/s41467-024-47376-4.
4
Bioprinting Methods for Fabricating In Vitro Tubular Blood Vessel Models.
Cyborg Bionic Syst. 2023 Aug 1;4:0043. doi: 10.34133/cbsystems.0043. eCollection 2023.
5
3D printing biocompatible materials with Multi Jet Fusion for bioreactor applications.
Int J Bioprint. 2022 Oct 22;9(1):623. doi: 10.18063/ijb.v9i1.623. eCollection 2023.
6
Laser Sintering Approaches for Bone Tissue Engineering.
Polymers (Basel). 2022 Jun 9;14(12):2336. doi: 10.3390/polym14122336.
7
Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning.
Innovation (Camb). 2022 Apr 27;3(4):100253. doi: 10.1016/j.xinn.2022.100253. eCollection 2022 Jul 12.
9
3D Printing Polymer-based Bolus Used for Radiotherapy.
Int J Bioprint. 2021 Sep 22;7(4):414. doi: 10.18063/ijb.v7i4.414. eCollection 2021.
10
Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges.
Adv Sci (Weinh). 2022 Jan;9(3):e2102908. doi: 10.1002/advs.202102908. Epub 2021 Nov 16.

本文引用的文献

1
A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.
Sci Technol Adv Mater. 2015 May 5;16(3):033502. doi: 10.1088/1468-6996/16/3/033502. eCollection 2015 Jun.
2
Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices.
Adv Sci (Weinh). 2015 Jul 16;2(9):1500125. doi: 10.1002/advs.201500125. eCollection 2015 Sep.
3
Three dimensional model for surgical planning in resection of thoracic tumors.
Int J Surg Case Rep. 2015;16:127-9. doi: 10.1016/j.ijscr.2015.09.037. Epub 2015 Oct 3.
4
Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients.
Sci Transl Med. 2015 Apr 29;7(285):285ra64. doi: 10.1126/scitranslmed.3010825.
5
Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
J Biomed Mater Res A. 2014 Dec;102(12):4326-35. doi: 10.1002/jbm.a.35108.
6
Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients.
Biomaterials. 2014 Nov;35(33):9023-32. doi: 10.1016/j.biomaterials.2014.07.015. Epub 2014 Aug 5.
7
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
Lab Chip. 2014 Jul 7;14(13):2202-11. doi: 10.1039/c4lc00030g. Epub 2014 May 23.
9
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.
Adv Mater. 2014 May 21;26(19):3124-30. doi: 10.1002/adma.201305506. Epub 2014 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验