Suppr超能文献

用于骨组织工程的激光烧结方法。

Laser Sintering Approaches for Bone Tissue Engineering.

作者信息

DiNoro Jeremy N, Paxton Naomi C, Skewes Jacob, Yue Zhilian, Lewis Philip M, Thompson Robert G, Beirne Stephen, Woodruff Maria A, Wallace Gordon G

机构信息

ARC Centre of Excellence for Electromaterials Science, Innovation Campus, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.

Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing, Brisbane, QLD 4059, Australia.

出版信息

Polymers (Basel). 2022 Jun 9;14(12):2336. doi: 10.3390/polym14122336.

Abstract

The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.

摘要

增材制造(AM)技术在医学领域的应用彻底改变了组织工程。根据组织类型的不同,特定的增材制造方法能够紧密匹配组织的物理和生物学属性,以引导组织再生。对于诸如骨骼等硬组织,粉末床熔融(PBF)技术具有巨大潜力,因为它们能够制造出符合维持骨骼功能和支持再生所需机械要求的材料。本综述聚焦于利用激光烧结为骨组织工程(BTE)应用创建支架的粉末床熔融技术。阐述了最佳支架的要求,范围从材料的生物相容性和生物活性,到生成特定结构以重现天然人骨的孔隙率、连通性和机械性能。该综述的主要目的是概述在骨组织工程背景下使用粉末床熔融加工的最常见材料;首先概述最常见的聚合物,包括聚酰胺、聚己内酯、聚乙烯和聚醚醚酮。随后的章节研究了金属和陶瓷在类似骨组织工程应用系统中的使用情况。最后一部分探讨了复合材料的使用方式。在每个材料部分中,都概述了其优点和缺点,包括它们的机械和生物学性能以及相关的打印参数。所提供的框架可应用于新型材料或基于激光的方法的开发,以最终生成骨组织类似物或引导骨再生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1259/9229946/13f8f3eb8c44/polymers-14-02336-g001.jpg

相似文献

1
Laser Sintering Approaches for Bone Tissue Engineering.
Polymers (Basel). 2022 Jun 9;14(12):2336. doi: 10.3390/polym14122336.
2
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
3
Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review.
J Biomed Mater Res B Appl Biomater. 2022 Jun;110(6):1479-1503. doi: 10.1002/jbm.b.34997. Epub 2021 Dec 17.
5
3D bioactive composite scaffolds for bone tissue engineering.
Bioact Mater. 2017 Dec 1;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001. eCollection 2018 Sep.
6
A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.
Sci Technol Adv Mater. 2015 May 5;16(3):033502. doi: 10.1088/1468-6996/16/3/033502. eCollection 2015 Jun.
7
Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335. doi: 10.1016/j.msec.2017.05.003. Epub 2017 May 4.
10
Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review.
Bioengineering (Basel). 2022 Nov 24;9(12):728. doi: 10.3390/bioengineering9120728.

引用本文的文献

1
Strategic advances in Vat Photopolymerization for 3D printing of calcium phosphate-based bone scaffolds: A review.
Bioact Mater. 2025 Jun 27;52:719-752. doi: 10.1016/j.bioactmat.2025.05.001. eCollection 2025 Oct.
3
Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing.
Nanomedicine (Lond). 2025 Jan;20(2):207-224. doi: 10.1080/17435889.2024.2439242. Epub 2024 Dec 17.
4
An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells.
Int J Mol Sci. 2024 Mar 29;25(7):3836. doi: 10.3390/ijms25073836.
5
Optimization of Cobalt-Chromium (Co-Cr) Scaffolds for Bone Tissue Engineering in Endocrine, Metabolic and Immune Disorders.
Endocr Metab Immune Disord Drug Targets. 2024;24(4):430-440. doi: 10.2174/0118715303258126231025115956.
6
Three-Dimensional Scaffolds for Bone Tissue Engineering.
Bioengineering (Basel). 2023 Jun 25;10(7):759. doi: 10.3390/bioengineering10070759.
7
Additive manufacturing of sustainable biomaterials for biomedical applications.
Asian J Pharm Sci. 2023 May;18(3):100812. doi: 10.1016/j.ajps.2023.100812. Epub 2023 Apr 27.
8
Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering.
Materials (Basel). 2022 Dec 6;15(23):8693. doi: 10.3390/ma15238693.

本文引用的文献

1
Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.
Acta Biomater. 2022 Mar 15;141:190-197. doi: 10.1016/j.actbio.2022.01.021. Epub 2022 Jan 15.
2
A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering.
ACS Appl Bio Mater. 2020 Dec 21;3(12):8739-8747. doi: 10.1021/acsabm.0c01126. Epub 2020 Nov 17.
6
FDA Regulation and Approval of Medical Devices: 1976-2020.
JAMA. 2021 Aug 3;326(5):420-432. doi: 10.1001/jama.2021.11171.
7
3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores.
Mater Sci Eng C Mater Biol Appl. 2021 Aug;127:112197. doi: 10.1016/j.msec.2021.112197. Epub 2021 May 24.
8
3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives.
Int J Nanomedicine. 2021 Jun 24;16:4289-4319. doi: 10.2147/IJN.S311001. eCollection 2021.
9
Patient-specific implants for craniomaxillofacial surgery: A manufacturer's experience.
Ann Med Surg (Lond). 2021 Jun 2;66:102420. doi: 10.1016/j.amsu.2021.102420. eCollection 2021 Jun.
10
Advances in powder bed fusion 3D printing in drug delivery and healthcare.
Adv Drug Deliv Rev. 2021 Jul;174:406-424. doi: 10.1016/j.addr.2021.04.025. Epub 2021 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验