Suppr超能文献

脂质和脂蛋白在动脉粥样硬化中的作用

The Role of Lipids and Lipoproteins in Atherosclerosis

作者信息

Linton MacRae F, Yancey Patricia G, Davies Sean S, Jerome W. Gray, Linton Edward F, Song Wenliang L, Doran Amanda C, Vickers Kasey C

机构信息

Stephen and Mary Schillig Professor of Medicine, Professor of Pharmacology, Director, Vanderbilt Lipid Clinic & Laboratory, Director, Atherosclerosis Research Unit, Cardiovascular Medicine, Vanderbilt University School of Medicine, 2220 Pierce Ave., 318 Preston Research Building, Nashville, TN 37232-6300

Research Assistant Professor, Cardiovascular Medicine Division, Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Ave., 312B Preston Research Building, Nashville, TN 37232-6300

Abstract

Atherosclerosis is the underlying cause of heart attack and stroke. Early observations that cholesterol is a key component of arterial plaques gave rise to the cholesterol hypothesis for the pathogenesis of atherosclerosis. Population studies have demonstrated that elevated levels of LDL cholesterol and apolipoprotein B (apoB) 100, the main structural protein of LDL, are directly associated with risk for atherosclerotic cardiovascular events (ASCVE). Indeed, infiltration and retention of apoB containing lipoproteins in the artery wall is a critical initiating event that sparks an inflammatory response and promotes the development of atherosclerosis. Arterial injury causes endothelial dysfunction promoting modification of apoB containing lipoproteins and infiltration of monocytes into the subendothelial space. Internalization of the apoB containing lipoproteins by macrophages promotes foam cell formation, which is the hallmark of the fatty streak phase of atherosclerosis. Macrophage inflammation results in enhanced oxidative stress and cytokine/chemokine secretion, causing more LDL/remnant oxidation, endothelial cell activation, monocyte recruitment, and foam cell formation. HDL, apoA-I, and endogenous apoE prevent inflammation and oxidative stress and promote cholesterol efflux to reduce lesion formation. Macrophage inflammatory chemoattractants stimulate infiltration and proliferation of smooth muscle cells. Smooth muscle cells produce the extracellular matrix providing a stable fibrous barrier between plaque prothrombotic factors and platelets. Unresolved inflammation results in formation of vulnerable plaques characterized by enhanced macrophage apoptosis and defective efferocytosis of apoptotic cells resulting in necrotic cell death leading to increased smooth muscle cell death, decreased extracellular matrix production, and collagen degradation by macrophage proteases. Rupture of the thinning fibrous cap promotes thrombus formation resulting in clinical ischemic ASCVE. Surprisingly, native LDL is not taken up by macrophages in vitro but has to be modified to promote foam cell formation. Oxidative modification converts LDL into atherogenic particles that initiate inflammatory responses. Uptake and accumulation of oxidatively modified LDL (oxLDL) by macrophages initiates a wide range of bioactivities that may drive development of atherosclerotic lesions. Lowering LDL-cholesterol with statins reduces risk for cardiovascular events, providing ultimate proof of the cholesterol hypothesis. All of the apoB containing lipoproteins are atherogenic, and both triglyceride rich remnant lipoproteins and Lp(a) promote atherothrombosis. Non-HDL cholesterol levels capture all of the apoB containing lipoproteins in one number and are useful in assessing risk in the setting of hypertriglyceridemia. Measures of apoB and LDL-P are superior at predicting risk for ASCVE, when levels of LDL-C and LDL-P are discordant. Here, we also describe the current landscape of HDL metabolism. Epidemiological studies have consistently shown that HDL-C levels are inversely related to ASCVE. We highlight recent clinical trials aimed at raising HDL-C that failed to reduce CVE and the shifting clinical targets of HDL-C, HDL particle numbers, and HDL function (e.g. cholesterol efflux capacity). Furthermore, we describe many beneficial properties of HDL that antagonize atherosclerosis and how HDL dysfunction may promote cardiometabolic disease.

摘要

动脉粥样硬化是心脏病发作和中风的根本原因。早期观察发现胆固醇是动脉斑块的关键成分,由此产生了动脉粥样硬化发病机制的胆固醇假说。人群研究表明,低密度脂蛋白胆固醇(LDL-C)和载脂蛋白B(apoB)100(LDL的主要结构蛋白)水平升高与动脉粥样硬化性心血管事件(ASCVE)风险直接相关。事实上,含apoB脂蛋白在动脉壁中的浸润和潴留是引发炎症反应并促进动脉粥样硬化发展的关键起始事件。动脉损伤导致内皮功能障碍,促进含apoB脂蛋白的修饰以及单核细胞浸润至内皮下间隙。巨噬细胞对含apoB脂蛋白的内化促进泡沫细胞形成,这是动脉粥样硬化脂肪条纹阶段的标志。巨噬细胞炎症导致氧化应激增强和细胞因子/趋化因子分泌增加,引起更多LDL/残余颗粒氧化、内皮细胞活化、单核细胞募集和泡沫细胞形成。高密度脂蛋白(HDL)、载脂蛋白A-I(apoA-I)和内源性载脂蛋白E(apoE)可预防炎症和氧化应激,并促进胆固醇流出以减少病变形成。巨噬细胞炎性趋化因子刺激平滑肌细胞浸润和增殖。平滑肌细胞产生细胞外基质,在斑块促血栓形成因子和血小板之间提供稳定的纤维屏障。未解决的炎症导致易损斑块形成,其特征为巨噬细胞凋亡增强以及凋亡细胞的吞噬作用缺陷,导致坏死性细胞死亡,进而导致平滑肌细胞死亡增加、细胞外基质产生减少以及巨噬细胞蛋白酶介导的胶原蛋白降解。变薄的纤维帽破裂促进血栓形成,导致临床缺血性ASCVE。令人惊讶的是,天然LDL在体外不被巨噬细胞摄取,但必须经过修饰才能促进泡沫细胞形成。氧化修饰将LDL转化为致动脉粥样硬化颗粒,引发炎症反应。巨噬细胞对氧化型LDL(oxLDL)的摄取和积累引发多种生物活性,可能推动动脉粥样硬化病变的发展。使用他汀类药物降低LDL-胆固醇可降低心血管事件风险,为胆固醇假说提供了最终证据。所有含apoB脂蛋白都具有致动脉粥样硬化性,富含甘油三酯的残余脂蛋白和脂蛋白(a)[Lp(a)]均促进动脉粥样硬化血栓形成。非HDL胆固醇水平用一个数值反映了所有含apoB脂蛋白,有助于评估高甘油三酯血症情况下的风险。当LDL-C和LDL颗粒数(LDL-P)水平不一致时,apoB和LDL-P的测量在预测ASCVE风险方面更具优势。在此,我们还描述了HDL代谢的当前情况。流行病学研究一致表明,HDL-C水平与ASCVE呈负相关。我们重点介绍了近期旨在提高HDL-C但未能降低心血管事件(CVE)的临床试验,以及HDL-C、HDL颗粒数量和HDL功能(如胆固醇流出能力)不断变化的临床靶点。此外,我们描述了HDL拮抗动脉粥样硬化的许多有益特性以及HDL功能障碍如何促进心脏代谢疾病。

相似文献

2
Pitavastatin: novel effects on lipid parameters.匹伐他汀:对血脂参数的新作用。
Atheroscler Suppl. 2011 Nov;12(3):277-84. doi: 10.1016/S1567-5688(11)70887-X.
3
Apolipoprotein B-containing lipoproteins in atherogenesis.动脉粥样硬化形成过程中含载脂蛋白B的脂蛋白
Nat Rev Cardiol. 2025 Jun;22(6):399-413. doi: 10.1038/s41569-024-01111-0. Epub 2025 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验