Patel Madhumita, Moon Hyo Jung, Ko Du Young, Jeong Byeongmoon
Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5160-9. doi: 10.1021/acsami.5b12324. Epub 2016 Feb 16.
As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(L-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system.
作为二维(2D)纳米材料,石墨烯(G)和氧化石墨烯(GO)已发展成为生物医学研究的新平台,可用作生物传感器、成像剂和药物递送载体。特别是,氧化石墨烯独特的表面性质可成为调节细胞行为和各种生物序列的重要工具。在此,我们报告了一种氧化石墨烯/多肽热凝胶(GO/P)复合系统,该系统由悬浮有氧化石墨烯的聚(乙二醇)-聚(L-丙氨酸)(PEG-PA)水溶液通过温度敏感的溶胶-凝胶转变制备而成。与纯水凝胶系统以及石墨烯掺入水凝胶的G/P复合系统相比,该复合系统能显著增强包括PPAR-γ、CEBP-α、LPL、AP2、ELOVL3和HSL在内的脂肪生成生物标志物的表达。我们证明,作为脂肪生成分化因子的胰岛素优先附着于氧化石墨烯,并在三维(3D)细胞培养期间持续供应给掺入的干细胞。另一方面,胰岛素在石墨烯存在的情况下会部分变性,并干扰干细胞的脂肪生成分化。该研究表明,二维/三维复合系统作为一种三维细胞培养基质是一个有前景的平台,其中二维材料在调节干细胞命运方面的表面性质在三维培养系统中得到了有效体现。