Suppr超能文献

来自普拉德-威利综合征关键区域的非蛋白质编码RNA的母体转录可挽救小鼠的生长迟缓。

Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice.

作者信息

Rozhdestvensky Timofey S, Robeck Thomas, Galiveti Chenna R, Raabe Carsten A, Seeger Birte, Wolters Anna, Gubar Leonid V, Brosius Jürgen, Skryabin Boris V

机构信息

Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.

Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.

出版信息

Sci Rep. 2016 Feb 5;6:20398. doi: 10.1038/srep20398.

Abstract

Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.

摘要

普拉德-威利综合征(PWS)是一种神经遗传疾病,由15号染色体q11-q13区域父源表达基因的缺失引起。PWS关键区域(PWScr)包含一系列非蛋白质编码的IPW-A外显子,这些外显子含有内含子SNORD116 snoRNA基因。PWScr的缺失与人类的PWS以及小鼠的生长迟缓相关,在C57BL/6背景下,小鼠出生后致死率约为15%。在此,我们分析了一种敲入小鼠,其在PWScr上游插入了一个5'HPRT-LoxP-Neo(R)盒(5'LoxP)。当在父源PWScr缺失小鼠模型(PWScr(p-/m5'LoxP))中母源遗传该插入时,我们观察到生长迟缓及出生后致死率得到了补偿。PWScr(p-/m5'LoxP)小鼠PWS位点的基因组甲基化模式和蛋白质编码基因的表达保持不变。有趣的是,检测到原本沉默的母源染色体上普遍存在Snord116和IPW-A外显子转录。原位杂交表明,PWScr(p-/m5'LoxP)小鼠在与野生型动物相似的脑区表达Snord116。我们的结果表明,某些脑区缺乏PWScr RNA表达可能是小鼠生长迟缓表型的主要原因。我们提出,印记区域上疾病相关基因的激活可能会带来相关疾病的通用治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d99b/4742849/fe4d03b509b2/srep20398-f1.jpg

相似文献

3
Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.
PLoS Genet. 2007 Dec 28;3(12):e235. doi: 10.1371/journal.pgen.0030235.
4
7
A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research.
Int J Mol Sci. 2021 Mar 31;22(7):3613. doi: 10.3390/ijms22073613.
8
R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13938-43. doi: 10.1073/pnas.1305426110. Epub 2013 Aug 5.

引用本文的文献

1
Endocrine features of Prader-Willi syndrome: a narrative review focusing on genotype-phenotype correlation.
Front Endocrinol (Lausanne). 2024 Apr 26;15:1382583. doi: 10.3389/fendo.2024.1382583. eCollection 2024.
2
The emerging role of snoRNAs in human disease.
Genes Dis. 2022 Dec 26;10(5):2064-2081. doi: 10.1016/j.gendis.2022.11.018. eCollection 2023 Sep.
4
The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets.
Front Cell Dev Biol. 2021 Oct 25;9:730014. doi: 10.3389/fcell.2021.730014. eCollection 2021.
5
SNORD116 and growth hormone therapy impact IGFBP7 in Prader-Willi syndrome.
Genet Med. 2021 Sep;23(9):1664-1672. doi: 10.1038/s41436-021-01185-y. Epub 2021 May 26.
6
A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research.
Int J Mol Sci. 2021 Mar 31;22(7):3613. doi: 10.3390/ijms22073613.
7
Epigenetics in Prader-Willi Syndrome.
Front Genet. 2021 Feb 15;12:624581. doi: 10.3389/fgene.2021.624581. eCollection 2021.
8
Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events.
Sci Adv. 2020 Feb 12;6(7):eaax2941. doi: 10.1126/sciadv.aax2941. eCollection 2020 Feb.
9
Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome.
Front Endocrinol (Lausanne). 2019 Dec 13;10:864. doi: 10.3389/fendo.2019.00864. eCollection 2019.
10
Functional diversity of small nucleolar RNAs.
Nucleic Acids Res. 2020 Feb 28;48(4):1627-1651. doi: 10.1093/nar/gkz1140.

本文引用的文献

2
Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome.
Eur J Hum Genet. 2015 Feb;23(2):252-5. doi: 10.1038/ejhg.2014.103. Epub 2014 Jun 11.
4
Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs.
Hum Mol Genet. 2014 Sep 1;23(17):4674-85. doi: 10.1093/hmg/ddu187. Epub 2014 Apr 23.
6
R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13938-43. doi: 10.1073/pnas.1305426110. Epub 2013 Aug 5.
7
A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure.
Hum Mol Genet. 2013 Nov 1;22(21):4318-28. doi: 10.1093/hmg/ddt281. Epub 2013 Jun 13.
8
Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader-Willi syndrome.
Int J Dev Neurosci. 2012 Oct;30(6):479-85. doi: 10.1016/j.ijdevneu.2012.05.005. Epub 2012 Jun 1.
9
An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice.
PLoS One. 2012;7(4):e34348. doi: 10.1371/journal.pone.0034348. Epub 2012 Apr 4.
10
Prader-Willi syndrome.
Genet Med. 2012 Jan;14(1):10-26. doi: 10.1038/gim.0b013e31822bead0. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验