Suppr超能文献

采用随机森林方法评估心率变异性指标的胎儿成熟度。

Assessment of fetal maturation age by heart rate variability measures using random forest methodology.

机构信息

Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

Department of Obstetrics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

出版信息

Comput Biol Med. 2016 Mar 1;70:157-162. doi: 10.1016/j.compbiomed.2016.01.020. Epub 2016 Jan 26.

Abstract

Fetal maturation age assessment based on heart rate variability (HRV) is a predestinated tool in prenatal diagnosis. To date, almost linear maturation characteristic curves are used in univariate and multivariate models. Models using complex multivariate maturation characteristic curves are pending. To address this problem, we use Random Forest (RF) to assess fetal maturation age and compare RF with linear, multivariate age regression. We include previously developed HRV indices such as traditional time and frequency domain indices and complexity indices of multiple scales. We found that fetal maturation was best assessed by complexity indices of short scales and skewness in state-dependent datasets (quiet sleep, active sleep) as well as in state-independent recordings. Additionally, increasing fluctuation amplitude contributed to the model in the active sleep state. None of the traditional linear HRV parameters contributed to the RF models. Compared to linear, multivariate regression, the mean prediction of gestational age (GA) is more accurate with RF than in linear, multivariate regression (quiet state: R(2)=0,617 vs. R(2)=0,461, active state: R(2)=0,521 vs. R(2)=0,436, state independent: R(2)=0,583 vs. R(2)=0,548). We conclude that classification and regression tree models such as RF methodology are appropriate for the evaluation of fetal maturation age. The decisive role of adjustments between different time scales of complexity may essentially extend previous analysis concepts mainly based on rhythms and univariate complexity indices. Those system characteristics may have implication for better understanding and accessibility of the maturating complex autonomic control and its disturbance.

摘要

基于心率变异性(HRV)的胎儿成熟度评估是产前诊断的一种理想工具。迄今为止,在单变量和多变量模型中几乎都使用了几乎线性的成熟特征曲线。使用复杂的多变量成熟特征曲线的模型仍在研究中。为了解决这个问题,我们使用随机森林(RF)来评估胎儿成熟度,并将 RF 与线性、多变量年龄回归进行比较。我们包括了以前开发的 HRV 指数,如传统的时域和频域指数以及多尺度的复杂性指数。我们发现,在依赖状态(安静睡眠、活跃睡眠)和独立于状态的记录中,短尺度的复杂性指数和偏度最能评估胎儿成熟度。此外,在活跃睡眠状态下,波动幅度的增加有助于模型的建立。传统的线性 HRV 参数都没有为 RF 模型做出贡献。与线性、多变量回归相比,RF 对胎龄(GA)的平均预测比线性、多变量回归更准确(安静状态:R(2)=0.617 比 R(2)=0.461,活跃状态:R(2)=0.521 比 R(2)=0.436,独立状态:R(2)=0.583 比 R(2)=0.548)。我们得出结论,分类和回归树模型(如 RF 方法)适合评估胎儿成熟度。复杂性不同时间尺度之间的调整的决定性作用可能从根本上扩展了以前主要基于节律和单变量复杂性指数的分析概念。这些系统特征可能对理解和获得成熟的复杂自主控制及其干扰有启示作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验